+0  
 
0
190
1
avatar

There are two pairs $(x,y)$ of real numbers that satisfy the equation $x+y = 3xy = 4$. Given that the solutions $x$ are in the form $x = \frac{a \pm b\sqrt{c}}{d}$ where $a$, $b$, $c$, and $d$ are positive integers and the expression is completely simplified, what is the value of $a + b + c + d$?

Guest Jan 24, 2018
 #1
avatar+86859 
+1

\( $x = \frac{a \pm b\sqrt{c}}{d}$\)

 

x + y   = 4       (1)

3xy  = 4  ⇒   y  = 4/ [ 3x]     (2)

 

Sub (2)  into (1)

 

x + 4 / [3x]  =   4            multiply through by  3x

 

3x^2  + 4  =  12x        rearrange as

 

3x^2  - 12x  + 4  =  0

 

x =  [ 12 ±√ [ 144 - 48] ] / 6

 

x  =   [ 12 ±√ 96 ] / 6 

 

x = [  12 ± 4√6 ] / 6      =   [ 6 ± 2√6 ] / 3

 

So  

 

A =  6     B  = 2   C   = 6   D   =  3

 

And their sum is 

 

17 

 

 

cool cool cool

CPhill  Jan 24, 2018

9 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.