+0  
 
0
46
1
avatar

Let $f(x)=x+2$ and $g(x)=x/3.$ Also denote the inverses to these functions as $f^{-1}$ and $g^{-1}.$ Compute \[f(g^{-1}(f^{-1}(f^{-1}(g(f(19)))))).\]

Guest Mar 20, 2018
Sort: 

1+0 Answers

 #1
avatar+6949 
+3

\(f(x)=x+2\)          and          \(f^{-1}(x)=x-2\)

\(g(x)=x/3\)             and          \(g^{-1}(x)=3x\)

 

There may a better way to do this, but here is what I got:

 

\(\begin{array}\ &&f(g^{-1}(f^{-1}(f^{-1}(g( {\color{Red}f(19)} ))))) \\ =&&f(g^{-1}(f^{-1}(f^{-1}(g( {\color{Red}19+2} )))))\\ =&&f(g^{-1}(f^{-1}(f^{-1}(g( {\color{Red}21} )))))\\ =&&f(g^{-1}(f^{-1}(f^{-1}( {\color{Orange}g( 21 )} ))))\\ =&&f(g^{-1}(f^{-1}(f^{-1}( {\color{Orange}21/3} ))))\\ =&&f(g^{-1}(f^{-1}(f^{-1}( {\color{Orange}7} ))))\\ =&&f(g^{-1}(f^{-1}( {\color{orange}f^{-1}(7)} )))\\ =&&f(g^{-1}(f^{-1}( {\color{orange}7-2} )))\\ =&&f(g^{-1}(f^{-1}( {\color{orange}5} )))\\ =&&f(g^{-1}( {\color{Green}f^{-1}( 5 )} ))\\ =&&f(g^{-1}( {\color{Green}5-2} ))\\ =&&f(g^{-1}( {\color{Green}3} ))\\ =&&f({\color{Blue}g^{-1}( 3 )})\\ =&&f({\color{Blue}3(3)})\\ =&&f({\color{Blue}9})\\ =&&{\color{Fuchsia}f(9)}\\ =&&{\color{Fuchsia}9+2}\\ =&&{\color{Fuchsia}11} \end{array}\)

hectictar  Mar 21, 2018
edited by hectictar  Mar 21, 2018
edited by hectictar  Mar 21, 2018

36 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details