+0  
 
0
129
1
avatar

Let $f(x)=x+2$ and $g(x)=x/3.$ Also denote the inverses to these functions as $f^{-1}$ and $g^{-1}.$ Compute \[f(g^{-1}(f^{-1}(f^{-1}(g(f(19)))))).\]

Guest Mar 20, 2018
 #1
avatar+7339 
+3

\(f(x)=x+2\)          and          \(f^{-1}(x)=x-2\)

\(g(x)=x/3\)             and          \(g^{-1}(x)=3x\)

 

There may a better way to do this, but here is what I got:

 

\(\begin{array}\ &&f(g^{-1}(f^{-1}(f^{-1}(g( {\color{Red}f(19)} ))))) \\ =&&f(g^{-1}(f^{-1}(f^{-1}(g( {\color{Red}19+2} )))))\\ =&&f(g^{-1}(f^{-1}(f^{-1}(g( {\color{Red}21} )))))\\ =&&f(g^{-1}(f^{-1}(f^{-1}( {\color{Orange}g( 21 )} ))))\\ =&&f(g^{-1}(f^{-1}(f^{-1}( {\color{Orange}21/3} ))))\\ =&&f(g^{-1}(f^{-1}(f^{-1}( {\color{Orange}7} ))))\\ =&&f(g^{-1}(f^{-1}( {\color{orange}f^{-1}(7)} )))\\ =&&f(g^{-1}(f^{-1}( {\color{orange}7-2} )))\\ =&&f(g^{-1}(f^{-1}( {\color{orange}5} )))\\ =&&f(g^{-1}( {\color{Green}f^{-1}( 5 )} ))\\ =&&f(g^{-1}( {\color{Green}5-2} ))\\ =&&f(g^{-1}( {\color{Green}3} ))\\ =&&f({\color{Blue}g^{-1}( 3 )})\\ =&&f({\color{Blue}3(3)})\\ =&&f({\color{Blue}9})\\ =&&{\color{Fuchsia}f(9)}\\ =&&{\color{Fuchsia}9+2}\\ =&&{\color{Fuchsia}11} \end{array}\)

hectictar  Mar 21, 2018
edited by hectictar  Mar 21, 2018
edited by hectictar  Mar 21, 2018

11 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.