+0  
 
0
60
1
avatar

Lines \(m_{1}\)\(m_{2}\),\(l_{1}\)  and \(l_{2}\) are coplanar, and they are drawn such that \(l_{1}\) is parallel to \(l_{2}\), and \(m_{2}\) is perpendicular to \(l_{2}\). If the measure of angle 1 is 50 degrees, what is the measure in degrees of angle 2 in the figure below?

 Dec 6, 2020
edited by Guest  Dec 6, 2020
 #1
avatar+114221 
+1

Since   l2 is paralllel  l1    and m2 is perpendicular to l2 , then  m2  is also perpendicular to m1

 

Then the  angle  lying  below  1   =  90 - 50  =  40

 

And this  equals  the angle below angle 2

 

But this angle  and angle 2  are supplementary

 

So

 

40  +   angle  2   = 180

 

angle 2   =  180   - 40   =    140°

 

 

cool cool cool

 Dec 6, 2020

38 Online Users

avatar
avatar