+0  
 
0
76
1
avatar

Let \(f : \mathbb{R} \to \mathbb{R}\) be a function such that 

\(f(f(x) + y) = f(x^2 - y) + 4f(x) y\)

for all real numbers \(x\) and \(y\)

Let \(n\) be the number of possible values of \(f(3)\), and let \(s\) be the sum of all possible values of \(f(3).\) Find \(n\times s.\)

 Jan 9, 2022
edited by Guest  Jan 9, 2022
 #1
avatar
0

The possible values of f(3) are 3, 0, and -3, so the answer is 3*0 = 0.

 Jan 28, 2022

9 Online Users

avatar