+0  
 
0
60
1
avatar

a) Suppose that \[|a - b| + |b - c| + |c - a| = 20.\] What is the maximum possible value of $|a - b|$?

 

b) Suppose that \[|a - b| + |b - c| + |c - d| + \dots + |m-n| + |n-o| + \cdots+ |x - y| + |y - z| + |z - a| = 20.\] What is the maximum possible value of $|a - n|$?

Guest Apr 24, 2018
Sort: 

1+0 Answers

 #1
avatar+86568 
+1

Here's the first one

 

Let    a > c > b

 

And  since  a > b, then  l a - b l  =  a - b

And since  c > b, the l b - c l  =  c - b

And since a > c, then l c - a l  = a - c

 

Then  we have that

 

(a - b) + ( c - b) + ( a - c)  = 20  simplify

 

2a  - 2b  = 20       divide through by 2

 

a - b  =  10

 

And this is the max value for  l a - b l

 

 

 

cool cool cool

CPhill  Apr 24, 2018

31 Online Users

avatar
avatar
avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy