We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
403
1
avatar

a) Suppose that \[|a - b| + |b - c| + |c - a| = 20.\] What is the maximum possible value of $|a - b|$?

 

b) Suppose that \[|a - b| + |b - c| + |c - d| + \dots + |m-n| + |n-o| + \cdots+ |x - y| + |y - z| + |z - a| = 20.\] What is the maximum possible value of $|a - n|$?

 Apr 24, 2018
 #1
avatar+102372 
+1

Here's the first one

 

Let    a > c > b

 

And  since  a > b, then  l a - b l  =  a - b

And since  c > b, the l b - c l  =  c - b

And since a > c, then l c - a l  = a - c

 

Then  we have that

 

(a - b) + ( c - b) + ( a - c)  = 20  simplify

 

2a  - 2b  = 20       divide through by 2

 

a - b  =  10

 

And this is the max value for  l a - b l

 

 

 

cool cool cool

 Apr 24, 2018

8 Online Users

avatar