+0  
 
0
106
1
avatar+150 

How many non-congruent right triangles are there, all of whose sides have positive integer lengths, and one of whose legs (i.e. not the hypotenuse) has length 162?

xXxTenTacion  Jul 13, 2018
 #1
avatar+90027 
+1

One place to start is to  look at the divisors of 162  and see which ones are possible legs for  "primitive" Pythagorean Triple  right triangles

 

The  divisors  of  162  are   1 | 2 | 3 | 6 | 9 | 18 | 27 | 54 | 81 | 162

 

  3   will  work  because   3-4-5  is a primitive  triple

We need to divide  162  by each factor....and then  multiply  both 4 and 5 by this factor to find one triple

 

So

162/3  =   54

So  54 * 4  = 216

And 54 * 5 = 270

So    162 -  216 - 270  is a   "triple"

 

And

9  will work  because

9 - 40 - 41 is a primitive triple

So 162/9  = 18

And  18 * 40  = 720

And 18 * 41  =  738

So  162 - 720 - 738  is a  "triple'

 

There are two more which are a lttle hard to find...the next is

27 - 364 - 365

So 162/27  = 6

And 364 * 6  = 2184

And 365 * 6  = 2190

So 162 - 2184  -2190   is  a "triple'

 

The last  is 162 - 6560- 6562

 

So....there are 4    which have one leg  = 162

 

 

cool cool cool

CPhill  Jul 13, 2018

26 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.