+0  
 
0
123
1
avatar

Part (b): Find all pairs of positive integers (a, n)  such that n \ge 2 and 

\[a + (a + 1) + (a + 2) + \dots + (a + n - 1) = 100.\]

 Aug 31, 2018
 #1
avatar+20831 
+4

Part (b):

Find all pairs of positive integers \((a, n)\)  such that \(n \ge 2\) and 

\(a + (a + 1) + (a + 2) + \ldots + (a + n - 1) = 100\).

 

\(\begin{array}{|rcll|} \hline a + (a + 1) + (a + 2) + \dots + (a + n - 1) &=& 100 \\\\ \underbrace{(a + a + a + \ldots + a)}^{n ~\text{times}}_{\text{sum}=n\cdot a} + \underbrace{( 1 + 2 + \ldots + n - 1)}_{\text{sum}=\frac{1+(n-1)}{2} \cdot(n-1) }&=& 100 \\\\ n\cdot a + \dfrac{1+(n-1)}{2} \cdot(n-1) &=& 100 \\\\ n\cdot a + \dfrac{n(n-1)}{2} &=& 100 \quad & | \quad \cdot 2 \\\\ 2n\cdot a + n(n-1) &=& 200 \\ \mathbf{n\cdot (\underbrace{2a+n-1)}_{=b}} &\mathbf{=}& \mathbf{\underbrace{200}_{=n\cdot b}} \\ \hline \end{array} \)

 

Divisors of 200:

\(\begin{array}{|rcll|} \hline 200 = n &\cdot& b = \\ 1 &\cdot &200 \\ 2 &\cdot &100 \\ 4 &\cdot &50 \\ 5 &\cdot &40 \\ 8 &\cdot &25 \\ 10& \cdot & 20 \\ \hline \end{array} \)

 

\(\mathbf{(a,n) =\ ?}\)

\(\begin{array}{|r|r|r|c|} \hline n \ge 2 & b=2a+n-1 & a = \frac{b-n+1}{2} & a ~ \text{is integer} & (a,n) \\ \hline 2 & 100 \\ \hline 4 & 50 \\ \hline \color{red}5 & 40 & \color{red}18 & \checkmark & (18,5) \\ \hline \color{red}8 & 25 & \color{red}9 & \checkmark & (9,8) \\ \hline 10 & 20 \\ \hline \end{array} \)

 

\(\begin{array}{llcr} (18,5) :~ 18 + (18+1)+ (18+2)+ (18+3)+ (18+4)&=&100 \\ (9,8) :~ 9 + (9+1)+ (9+2)+ (9+3)+ (9+4)+ (9+5)+ (9+6)+ (9+7)&=&100 \\ \end{array}\)

 

laugh

 Aug 31, 2018
edited by heureka  Aug 31, 2018

5 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.