+0  
 
0
50
3
avatar

In how many ways can you change a 20 dollar bill using 10 dollar bills, 5 dollar bills, 2 dollar bills, and 1 dollar bills?

 Jun 10, 2021
 #1
avatar+505 
0

Now in this problem, 

Let the no. of  10 dollar bills be x, 5 dollar bills be y, 2 dollar bills be z and 1 dollar bills be w.

 

According to question, 

\(10x+5y+2z+w=20\)                    \(...(1)\)

 

In order to find no. of ways, we've to find no. of solutions eq. (1) has.

∴ By the theory of combinatrics, 

 

No. of solutions \(=\left( \begin{array}{c} 20+4-1 \\ 4-1 \end{array} \right)\)

                          \(=\left( \begin{array}{c} 23 \\ 3 \end{array} \right)\)

                          \(=1771\)

 

∴ Eq. (1) has 1771 possible set of solutions.

Thus a $20 bill can be changed in 1771  possible ways. 

 

 

~Amy 

 Jun 10, 2021
edited by amygdaleon305  Jun 10, 2021
 #2
avatar+174 
0

Each ball has five options to go 


Therefore four balls  will be filled in =

5×5×5×5

 

= 5^4 ways = 625 ways

 Jun 10, 2021
 #3
avatar+174 
0

10 ca we changed into 8 different ways:-

10

5,5

5,2,2,1

2,2,2,2,1,1

2,2,2,1,1,1,1

2,2,1,1,1,1,1,1

2,1,1,1,1,1,1,1,1

8 1s

Since 10,10 counts as 1

so we know that there will be a total of 8+7 different ways to change

so your answer is 15

apsiganocj  Jun 10, 2021

28 Online Users