Find the coordinates of the center of the circle.
The points on the circle are (22,15), (-25,0), (22,-29).
Using the square of the distance formula = r^2....let the center = (x,y)
So we have
(x -22)^2 + (y-15)^2 = (x -22)^2 + (y + 29)^2 simplify as
(y -15)^2 = ( y - 29)^2
y^2 -30y + 225 = y^2 -58y + 841
28y = 616
y = 616 / 28 = 22
So...using (22,15) and (-25,0) we can find x as
(x -22)^2 + ( 22-15)^2 = (x + 25)^2 + ( 22 - 0)^2
(x -22)^2 + 49 = ( x + 25)^2 + 484
x^2 - 44x + 484 + 49 = x^2 + 50x + 625 + 484
-44x + 49 = 50x + 625
- 94x = 576
x = 576 / -94 = -288/47
Coordinates are ( -288/47 , 22)