We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
349
2
avatar+4299 

Let \(p(x)=\sqrt{-x}\), and \(q(x)=8x^2+10x-3\) . What is the domain of \(p(q(x))\) ? Your answer will be of the form \(a\le x \le b\). Find \(b-a\).

 Feb 4, 2018
 #1
avatar+8579 
+2

p( q(x) )   =   √[ -(8x2 + 10x - 3) ]

 

To avoid the square root of a neative number, the domain must be the  x  values such that

 

-( 8x2 + 10x - 3)   ≥   0

 

8x2 + 10x - 3   ≤   0

 

To solve this inequality, let's first find the  x  values that make

 

8x2 + 10x - 3   =   0

 

8x2 + 12x - 2x - 3   =   0

 

4x(2x + 3) - 1(2x + 3)   =   0

 

(2x + 3)(4x - 1)   =   0

 

2x + 3  =  0          or          4x - 1  =  0

x   =  -3/2             or            x  =  1/4

 

Since  8x2 + 10x - 3  is a quadratic equation, we can say that the  x  values that make it ≤ 0 will be either

 

x ≤ -3/2   and   x ≥ 1/4           OR          -3/2 ≤ x ≤ 1/4

 

If  x = -2 ,     8x2 + 10x - 3  =  8(-2)2 + 10(-2) - 3  =  24 - 20 - 3  =  1

 

So the  x  values in the interval   x ≤ -3/2  and  x ≥ 1/4   do not make   8x2 + 10x - 3  ≤  0

 

If  x = 0 ,     8x2 + 10x - 3  =  8(0)2 + 10(0) - 3  =  -3

 

So the  x  values in the interval   -3/2 ≤ x ≤ 1/4   do make   8x2 + 10x - 3  ≤  0

 

The domain of  p( q(x) )   is   -3/2 ≤ x ≤ 1/4

 

1/4 - -3/2   =   1/4 + 3/2   =   1/4 + 6/4   =   7/4

 Feb 4, 2018
 #2
avatar+4299 
+1

Very Nice solution, hectictar! Great! smiley

 Feb 5, 2018

9 Online Users

avatar