+0  
 
0
392
4
avatar+203 

Drag and drop a statement or reason to each box to complete the proof.

 

Given: parallelogram EFGH

Prove: EG¯¯¯¯¯ bisects HF¯¯¯¯¯¯ and HF¯¯¯¯¯¯ bisects EG¯¯¯¯¯ .

 

Options:

KennedyPape  Dec 16, 2017
 #1
avatar+88899 
+2

                                                                        Definition of a Parallelogram

 

 

 

EF  = HG

 

 

EK  = GK

FK  = HK

 

                                                                    Definition of  bisector

 

 

 

cool cool cool

CPhill  Dec 16, 2017
 #2
avatar+203 
+1

 

EF¯¯¯¯¯ ∥ HG¯¯¯¯¯¯    =  Definition of a parallelogram

 

? = When two parallel lines are cut by a transversal, alternate interior angles are congruent.

 

EF¯¯¯¯  ≅ HG¯¯¯¯ = The opposite sides of a parallelogram are congruent.

 

 

△EKF≅△GKH = ASA Congruence Postulate

 

EK¯¯¯¯  ≅ GK¯¯¯¯       =CPCTC

FK¯¯¯¯  ≅ HK¯¯¯¯

 

EG¯¯¯¯ bisects HF¯¯¯¯ nad HF¯¯¯¯ bisects EG¯¯¯¯ = Def. of bisector

 

 

Where the REASON says: When two parallel lines are cut by a transversal, alternate interior angles are congruent. 

Which STATEMENT would it be?: 

(A) ∠EKF  ≅ ∠HKF

 

(B) ∠FEK  ≅ ∠HGK

      ∠EFK  ≅ ∠GHK

KennedyPape  Dec 16, 2017
 #3
avatar+88899 
+3

AH!!!!....this site does NOT LIKE the use of  too many "<"  signs....I don't know why, but it cut off my answer....!!!!!

 

The answer is  

 

 

angle FEK  = angle HGK

angle EFK  = angle GHK

 

 

Sorry...."Ghosts in the machine "

 

cool cool cool

CPhill  Dec 16, 2017
 #4
avatar+203 
+2

THANK YOU! THANK YOU! THANK YOU! THANK YOU SO MUCH!!!!

KennedyPape  Dec 16, 2017

15 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.