+0  
 
-1
1891
4
avatar+294 

Drag and drop a statement or reason to each box to complete the proof.

 

Given: parallelogram EFGH

Prove: EG¯¯¯¯¯ bisects HF¯¯¯¯¯¯ and HF¯¯¯¯¯¯ bisects EG¯¯¯¯¯ .

 

Options:

 Dec 16, 2017
 #1
avatar+107156 
+2

                                                                        Definition of a Parallelogram

 

 

 

EF  = HG

 

 

EK  = GK

FK  = HK

 

                                                                    Definition of  bisector

 

 

 

cool cool cool

 Dec 16, 2017
 #2
avatar+294 
+1

 

EF¯¯¯¯¯ ∥ HG¯¯¯¯¯¯    =  Definition of a parallelogram

 

? = When two parallel lines are cut by a transversal, alternate interior angles are congruent.

 

EF¯¯¯¯  ≅ HG¯¯¯¯ = The opposite sides of a parallelogram are congruent.

 

 

△EKF≅△GKH = ASA Congruence Postulate

 

EK¯¯¯¯  ≅ GK¯¯¯¯       =CPCTC

FK¯¯¯¯  ≅ HK¯¯¯¯

 

EG¯¯¯¯ bisects HF¯¯¯¯ nad HF¯¯¯¯ bisects EG¯¯¯¯ = Def. of bisector

 

 

Where the REASON says: When two parallel lines are cut by a transversal, alternate interior angles are congruent. 

Which STATEMENT would it be?: 

(A) ∠EKF  ≅ ∠HKF

 

(B) ∠FEK  ≅ ∠HGK

      ∠EFK  ≅ ∠GHK

KennedyPape  Dec 16, 2017
 #3
avatar+107156 
+3

AH!!!!....this site does NOT LIKE the use of  too many "<"  signs....I don't know why, but it cut off my answer....!!!!!

 

The answer is  

 

 

angle FEK  = angle HGK

angle EFK  = angle GHK

 

 

Sorry...."Ghosts in the machine "

 

cool cool cool

 Dec 16, 2017
 #4
avatar+294 
+2

THANK YOU! THANK YOU! THANK YOU! THANK YOU SO MUCH!!!!

KennedyPape  Dec 16, 2017

4 Online Users