In triangle $PQR$, let $M$ be the midpoint of $\overline{PQ}$, let $N$ be the midpoint of $\overline{PR}$, and let $O$ be the intersection of $\overline{QN}$ and $\overline{RM}$, as shown. If $\overline{QN}\perp\overline{PR}$, $QN = 1$, and $PR =1$, then find $OR$.