Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
37
1
avatar+1855 

Let x and y be nonnegative real numbers. If x^2 + 3y^2 = 18, then find the maximum value of x + y.

 Apr 4, 2024
 #1
avatar+410 
+2

There's a really good inequality for this, Cauchy-Schwarz inequality.

(a21+a22++a2n)(b21+b22++b2n)(a1b1+a1b2++anbn)2 , where a and b are a sequence of real numbers.

Applying this, we want to get xy on the right side so we do:

(x2+3y2)(1+13)=(x+3(13)y)2

1843(x+y)2

x+y24.

The maximum value is 24.

(Yes the equality condition can be satisfied).

 Apr 4, 2024

5 Online Users

avatar
avatar