We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
156
1
avatar+144 

 

Find all values of \(x\) such that \(\dfrac{x}{x+4} = -\dfrac{9}{x+3}\). If you find more than one value, then list your solutions in increasing order, separated by commas.

 Oct 18, 2018

Best Answer 

 #1
avatar+322 
+2

First of all we eill find domain of equation. x ≠ -4, x ≠  -3 because if x = -4,-3 we will have in denominator 0 

After this we start

\((x+3)(x) = -(x+4)(9) <=>\)

\(<=> x^2+3x = -9x -36 <=> \)

\(<=> x^2 + 12x + 36 = 0 <=> \)

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a} \)

x= -12/2 = -6 and

\(-6≠ -3,-6≠ -4 \) 

so \(x=-6\) is the answer.

Hope it helps! 

 Oct 18, 2018
 #1
avatar+322 
+2
Best Answer

First of all we eill find domain of equation. x ≠ -4, x ≠  -3 because if x = -4,-3 we will have in denominator 0 

After this we start

\((x+3)(x) = -(x+4)(9) <=>\)

\(<=> x^2+3x = -9x -36 <=> \)

\(<=> x^2 + 12x + 36 = 0 <=> \)

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a} \)

x= -12/2 = -6 and

\(-6≠ -3,-6≠ -4 \) 

so \(x=-6\) is the answer.

Hope it helps! 

Dimitristhym Oct 18, 2018

14 Online Users