+0  
 
0
48
2
avatar

What values of x satisfy |x - 4| + |x + 4| <= 10$?

Express your answer in interval notation.

 

ive found out the answers of      [4,5] or [-5,-4]

and dont understand where i went wrong in the problem.

 

Can someone explain? 

Guest Aug 28, 2018
 #1
avatar+90969 
+2

|x - 4| + |x + 4| <= 10

 

We have these  equations

 

x - 4  + x + 4   <=  10

2x  <=  10

 x  <= 5

 

And 

 

x - 4  + x + 4   >=  -10

2x   >= -10

x >= -5

 

So.....the solution  is   [-5 , 5  ]

 

Here's the graph of the solution  :  https://www.desmos.com/calculator/7ar4jqmtg3

 

 

cool cool cool

CPhill  Aug 28, 2018
 #2
avatar+20105 
0

What values of x satisfy |x - 4| + |x + 4| <= 10 ?

Express your answer in interval notation.

 

\( \huge |x + 4| + |x - 4| \le 10\)

 

Here we have two different amounts.

To dissolve them, we must make a double case distinction.

Usually we did this one after the other.
For reasons of space, we start with the first case in which the content of the left amount
is greater than or equal to zero.

 

\(\begin{array}{|rcll|} \hline & \underline{x\ge -4:}& \\\\ & x+4 + |x-4 | \le 10 \\ \\ \underline{\text{for } x\ge 4:} && \underline{\text{for } x \lt 4: } \\\\ x+4+x-4 \le 10 && x+4-(x-4) \le 10 \\ 2x \le 10 && 8 \le 10 \\ \boxed{ x \le 5 } && \\ \hline \end{array} \)

 

The other case was \(x \lt -4\).
In this area the content of the right amount is
always negative. A further case distinction is therefore not necessary here.

 

\(\begin{array}{|rcll|} \hline & \underline{x \lt -4:} \\\\ & -(x+4) - (x-4) \le 10 \\ \\ & -x-4-x+4 \le 10 \\ & -2x \le 10 \quad & \quad :(-2)\\ & x \ge \dfrac{10}{-2} \\ & \boxed{x \ge -5} \\ \hline \end{array} \)

 

Values of x in interval notation: [-5 , 5  ]

 

laugh

heureka  Aug 29, 2018

24 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.