+0  
 
0
156
1
avatar

What value of k will make \(4x^2 - 20x + k\) the square of a binomial?

Guest Dec 31, 2017
Sort: 

1+0 Answers

 #1
avatar+86649 
+2

4x^2  -  20x  +  k

 

We want  something like this :

 

(2x  - √k) (2x - √k)  =   4x^2  -   2√kx - 2√kx  + k  = 4x^2 - 4√kx  +  k

 

So....it appears that.we need to have   

 

-20  =   -4√k           square both sides

 

400  =  16k             divide both sides by 16

 

25  =  k

 

Proof

 

(2x  - √25) (2x - √25)  = 

(2x - 5)(2x - 5)  = 

(2x - 5)^2  =

4x^2 - 10x - 10x  + 25  = 

4x^2 - 20x + 25

 

So  the  binomial  is just   (2x  - 5)

 

 

 

cool cool cool

CPhill  Dec 31, 2017
edited by CPhill  Dec 31, 2017

8 Online Users

avatar

New Privacy Policy (May 2018)

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see cookie policy and privacy policy.