We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
66
1
avatar

}}$. Rationalize the denominator: frac{1}{1 + \sqrt{2} - \sqrt{3}}$. The simplified result can be written in the form $\frac{\sqrt{2} + a + \sqrt{b}}{c}$, where $a$, $b$, and $c$, are positive integers. What is $a + b + c$?

 May 23, 2019
 #1
avatar+102355 
+1

\($\frac{\sqrt{2} + a + \sqrt{b}}{c}$ \)

 

     1   [ 1 - ( √2 - √3) ]                         1 - √2 + √3                  1 - √2 + √3             1 - √2 + √3

__________________________  =  ______________  =   _____________ =  ________  =

[1 + (√2 - √3)]   [ 1 - ( √2 - √3) ]            1  -  (√2 - √3)^2         1 - [ 2 - 2√6 +3]         2√6 - 4

 

 

1 - √2 + √3

_________  =

2(√6 - 2)

 

[1 - √2 + √3 ]  ( √6 + 2)         [ √6 - √12 + √18 + 2 - 2√2 + 2√3 ]

__________________   =  ____________________________   =

2(√6 - 2)  (√6 + 2)                    2 ( 6 - 4)

 

[ √6 - 2√3 + 3√2 + 2 - 2√2 + 2√3 ]

__________________________  =      

   2 (6 - 4)

 

√2 + 2 + √6

__________

        4

 

So

 

a + b + c  =    2 + 6 + 4   =   12

 

 

cool cool cool

 May 24, 2019

18 Online Users