Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
805
1
avatar+31 

If P and V are the two distinct solutions to the equation $x^2=x+1$, then what is the value of (\P-Vi)^2

 May 23, 2019

Best Answer 

 #1
avatar+15058 
+3

 

If P and V are the two distinct solutions to the equation $x^2=x+1$, then what is the value of (\P-V)^2

 

x2=x+1x2x1=0x=p2±(p2)2q

x=12±14+1x=12±54x=12±125

P=12+125V=12125

(PV)2=((12+125)(12125))2(PV)2=(25)2 small mistake (PV)2=(5)2 

(PV)2=5

Thanks heureka and Allan!

laugh  !

 May 23, 2019
edited by asinus  May 23, 2019
 #1
avatar+15058 
+3
Best Answer

 

If P and V are the two distinct solutions to the equation $x^2=x+1$, then what is the value of (\P-V)^2

 

x2=x+1x2x1=0x=p2±(p2)2q

x=12±14+1x=12±54x=12±125

P=12+125V=12125

(PV)2=((12+125)(12125))2(PV)2=(25)2 small mistake (PV)2=(5)2 

(PV)2=5

Thanks heureka and Allan!

laugh  !

asinus May 23, 2019
edited by asinus  May 23, 2019

1 Online Users