+0  
 
+1
3
4
avatar+842 

Find the number of ordered pairs $(a,b)$ of integers such that
\frac{a + 2}{a + 1} = \frac{b}{12}.

 Jul 22, 2025
 #1
avatar+114 
-1

The number of solutions is 3.  I hope this helps!

 Jul 22, 2025
 #3
avatar+15127 
0

No, that's not helpful. It would be helpful if you explained your solution to us.

 

smiley  !

asinus  Jul 24, 2025
 #2
avatar+15127 
+1

Find the number of ordered pairs (a,b).

 

\(\dfrac{{\color{blue}a} + 2}{a + 1} = \dfrac{\color{blue}b}{12}\\ \)

\(\dfrac{{\color{blue}1}+2}{1+1}=\dfrac{\color{blue}18}{12}\\ \dfrac{{\color{blue}3}+2}{3+1}=\dfrac{\color{blue}15}{12}\\ \dfrac{{\color{blue}5}+2}{5+1}=\dfrac{\color{blue}14}{12}\\ \)

\( \dfrac{{\color{blue}11}+2}{11+1}=\dfrac{\color{blue}13}{12}\)

\(\color{blue}(a,b)\in\{(1,18)\ ; (3,15)\ ; (5,14)\ ; (11,13)\}\)

The number of solutions is 4.

 

smiley  !

 Jul 23, 2025
edited by asinus  Jul 23, 2025
edited by asinus  Jul 24, 2025
edited by asinus  Jul 24, 2025
 #4
avatar+15127 
+1

f(x)=12(x+2)/(x+1) grafic

At which integer-x is f(x) a integer?

There, f(x)=b.

 

smiley  !

asinus  Jul 24, 2025
edited by asinus  Jul 24, 2025
edited by asinus  Jul 24, 2025

2 Online Users