+0  
 
-1
5
1
avatar+267 

Let $k$ be a positive real number. The line $x + y = 3 + k$ and the circle $x^2 + y^2 = k$ are drawn. Find $k$ so that the line is tangent to the circle.

 Aug 3, 2025
 #1
avatar+15135 
+1

Let k be a positive real number and find  k, so that the line is tangent to the circle.

 

\(y=\sqrt{k-x^2}\\ y=-x+3+k\)

 

\(\color{blue}k\notin \{+\mathbb{R}\}\)

 

\(y=\sqrt{k-x^2}\\ y=-x+3+k \)

 

\(y=\sqrt{{\color{blue}1.365}-x^2}\\ y=-x+3\color{blue}-1.365\)

 

\(\color{blue}k\in \{ \approx 1.365,\ \approx-1.365\}\)   determined with graphics. 

 

If +k is replaced by -k in the problem, it is solvable. 

 

laugh !

 Aug 3, 2025
edited by asinus  Aug 3, 2025
edited by asinus  Aug 3, 2025
edited by asinus  Aug 4, 2025
edited by asinus  Aug 5, 2025
edited by asinus  Aug 5, 2025

2 Online Users

avatar