+0  
 
0
497
1
avatar

Find the equation of the tangent line to the curve (x-y)^2 =2x+1 at the point (4,1).

 Dec 14, 2015

Best Answer 

 #1
avatar+130540 
+10

(x-y)^2 =2x+1      expand

 

x^2 - 2xy + y^2  = 2x + 1       using implicit differentiation, we have

 

2x - 2y - 2xy' + 2yy'  = 2         divide through by 2

 

x - y - xy'  + yy'   = 1

 

y' [ y - x]  = 1 + y  - x

 

y'  =     [  1 + y  - x ] / [ y - x ]

 

And the slope at (4,1)  =

 

y'  = [ 1 + 1  - 4] / [ 1 - 4] =    [ -2]  / [ -3]   =   2/3

 

So the equation is

 

y = [2/3]( x - 4) + 1

 

y = [2/3] x - 8/3 + 1

 

y = [2/3]x  -5/3

 

Here's the graph of the function and the tangent line...........https://www.desmos.com/calculator/igebscsto1

 

 

 

cool cool cool

 Dec 15, 2015
 #1
avatar+130540 
+10
Best Answer

(x-y)^2 =2x+1      expand

 

x^2 - 2xy + y^2  = 2x + 1       using implicit differentiation, we have

 

2x - 2y - 2xy' + 2yy'  = 2         divide through by 2

 

x - y - xy'  + yy'   = 1

 

y' [ y - x]  = 1 + y  - x

 

y'  =     [  1 + y  - x ] / [ y - x ]

 

And the slope at (4,1)  =

 

y'  = [ 1 + 1  - 4] / [ 1 - 4] =    [ -2]  / [ -3]   =   2/3

 

So the equation is

 

y = [2/3]( x - 4) + 1

 

y = [2/3] x - 8/3 + 1

 

y = [2/3]x  -5/3

 

Here's the graph of the function and the tangent line...........https://www.desmos.com/calculator/igebscsto1

 

 

 

cool cool cool

CPhill Dec 15, 2015

1 Online Users