Assuming that m is a constant and you are solving for x:
mx2 - x - (m - 2)/4 = 0
mx2 - x - m/4 + 2/4 = 0
Multiplying by 4:
4mx2 - 4x - m + 2 = 0
Solving, using the quadratic formula with a = 4m, b = -4, and c = -m + 2 ---> c = 2 - m
x = [ 4 ± √( 42 - 4(4m)(2 - m) ) ] / [ 2(4m) ]
x = [ 4 ± √( 16 - 32m + 16m2) ) ] / (8m)
x = [ 4 ± √( 16( 1 -2m + m2) ) ] / (8m)
x = [ 4 ± 4√( 1 - 2m + m2 ) ] / (8m)
x = [ 4 ± 4√( 1 - 2m + m2 ) ] / (8m)
x = [ 4 ± 4√( m2 - 2m + 1 ) ] / (8m)
x = [ 4 ± 4√( m - 1)2) ] / (8m)
x = [ 4 ± 4|m - 1|) ] / (8m)
x = [ 1 ± |m - 1|) ] / (2m)
When m - 1 > 0: x = [ 1 + m - 1 ] / (2m) ---> x = m / (2m) ---> x = 1/2
When m - 1 < 0: x = [ 1 - (m - 1) ] / (2m) ---> x = (2 - m) / (2m)
Assuming that m is a constant and you are solving for x:
mx2 - x - (m - 2)/4 = 0
mx2 - x - m/4 + 2/4 = 0
Multiplying by 4:
4mx2 - 4x - m + 2 = 0
Solving, using the quadratic formula with a = 4m, b = -4, and c = -m + 2 ---> c = 2 - m
x = [ 4 ± √( 42 - 4(4m)(2 - m) ) ] / [ 2(4m) ]
x = [ 4 ± √( 16 - 32m + 16m2) ) ] / (8m)
x = [ 4 ± √( 16( 1 -2m + m2) ) ] / (8m)
x = [ 4 ± 4√( 1 - 2m + m2 ) ] / (8m)
x = [ 4 ± 4√( 1 - 2m + m2 ) ] / (8m)
x = [ 4 ± 4√( m2 - 2m + 1 ) ] / (8m)
x = [ 4 ± 4√( m - 1)2) ] / (8m)
x = [ 4 ± 4|m - 1|) ] / (8m)
x = [ 1 ± |m - 1|) ] / (2m)
When m - 1 > 0: x = [ 1 + m - 1 ] / (2m) ---> x = m / (2m) ---> x = 1/2
When m - 1 < 0: x = [ 1 - (m - 1) ] / (2m) ---> x = (2 - m) / (2m)