+0  
 
0
598
1
avatar

A is at point (3,4) and B is at point (8,12)

 

calculate the length of AB

 May 29, 2014

Best Answer 

 #1
avatar+130511 
+5

Using the distance formula, SQRT[(x2- x1)^2 + (y2- y1)^2], we have

((8-3)^2 + (12-4)^2))^(.5) =

(5^2 + 8^2)^(.5) = (25 + 64)^(.5) = (89)^(.5) =

$${\left({\mathtt{89}}\right)}^{\left({\mathtt{0.5}}\right)} = {\mathtt{9.433\: \!981\: \!132\: \!056\: \!603\: \!8}}$$

 May 29, 2014
 #1
avatar+130511 
+5
Best Answer

Using the distance formula, SQRT[(x2- x1)^2 + (y2- y1)^2], we have

((8-3)^2 + (12-4)^2))^(.5) =

(5^2 + 8^2)^(.5) = (25 + 64)^(.5) = (89)^(.5) =

$${\left({\mathtt{89}}\right)}^{\left({\mathtt{0.5}}\right)} = {\mathtt{9.433\: \!981\: \!132\: \!056\: \!603\: \!8}}$$

CPhill May 29, 2014

3 Online Users

avatar