+0  
 
0
66
1
avatar

A two-digit integer is written next to itself twice, forming a six-digit number. If the resulting number is divisible by 6, then how many possibilities are there for the original two-digit number?

Guest Jul 24, 2018

Best Answer 

 #1
avatar+20025 
+1

A two-digit integer is written next to itself twice, forming a six-digit number.
If the resulting number is divisible by 6,
then how many possibilities are there for the original two-digit number?

 

The two-digit integer: ab
The six-digit number:  ababab

 

\(\text{Divisible by $6$: If it is divisible by $2$ and by $3$ } \\ \text{Divisible by $2$: So $b$ must be even! $b=\{0,2,4,6,8\} $} \\ \text{Divisible by $3$: Sum the digits. The result must be divisible by $3$,} \\ \text{ $\qquad a+b+a+b+a+b = 3a+3b$, so ababab is always divisible by $3$ } \)

 

\(\begin{array}{|l|r|r|r|r|} \hline &a & b & ab & ababab \\ \hline 1.& 1 & 0 & 10 & 101010 \\ 2.& 1 & 2 & 12 & 121212 \\ 3.& 1 & 4 & 14 & 141414 \\ 4.& 1 & 6 & 16 & 161616 \\ 5.& 1 & 8 & 18 & 181818 \\ \hline 6.& 2 & 0 & 20 & 202020 \\ 7.& 2 & 2 & 22 & 222222 \\ 8.& 2 & 4 & 24 & 242424 \\ 9.& 2 & 6 & 26 & 262626 \\ 10.& 2 & 8 & 28 & 282828 \\ \hline 11.& 3 & 0 & 30 & 303030 \\ 12.& 3 & 2 & 32 & 323232 \\ 13.& 3 & 4 & 34 & 343434 \\ 14.& 3 & 6 & 36 & 363636 \\ 15.& 3 & 8 & 38 & 383838 \\ \hline 16.& 4 & 0 & 40 & 404040 \\ 17.& 4 & 2 & 42 & 424242 \\ 18.& 4 & 4 & 44 & 444444 \\ 19.& 4 & 6 & 46 & 464646 \\ 20.& 4 & 8 & 48 & 484848 \\ \hline 21.& 5 & 0 & 50 & 505050 \\ 22.& 5 & 2 & 52 & 525252 \\ 23.& 5 & 4 & 54 & 545454 \\ 24.& 5 & 6 & 56 & 565656 \\ 25.& 5 & 8 & 58 & 585858 \\ \hline 26.& 6 & 0 & 60 & 606060 \\ 27.& 6 & 2 & 62 & 626262 \\ 28.& 6 & 4 & 64 & 646464 \\ 29.& 6 & 6 & 66 & 666666 \\ 30.& 6 & 8 & 68 & 686868 \\ \hline 31.& 7 & 0 & 70 & 707070 \\ 32.& 7 & 2 & 72 & 727272 \\ 33.& 7 & 4 & 74 & 747474 \\ 34.& 7 & 6 & 76 & 767676 \\ 35.& 7 & 8 & 78 & 787878 \\ \hline 36.& 8 & 0 & 80 & 808080 \\ 37.& 8 & 2 & 82 & 828282 \\ 38.& 8 & 4 & 84 & 848484 \\ 39.& 8 & 6 & 85 & 868686 \\ 40.& 8 & 8 & 88 & 888888 \\ \hline 41.& 9 & 0 & 90 & 909090 \\ 42.& 9 & 2 & 92 & 929292 \\ 43.& 9 & 4 & 94 & 949494 \\ 44.& 9 & 6 & 96 & 969696 \\ 45.& 9 & 8 & 98 & 989898 \\ \hline \end{array}\)

 

There are 45 possibilities for the original two-digit number.

 

laugh

heureka  Jul 24, 2018
 #1
avatar+20025 
+1
Best Answer

A two-digit integer is written next to itself twice, forming a six-digit number.
If the resulting number is divisible by 6,
then how many possibilities are there for the original two-digit number?

 

The two-digit integer: ab
The six-digit number:  ababab

 

\(\text{Divisible by $6$: If it is divisible by $2$ and by $3$ } \\ \text{Divisible by $2$: So $b$ must be even! $b=\{0,2,4,6,8\} $} \\ \text{Divisible by $3$: Sum the digits. The result must be divisible by $3$,} \\ \text{ $\qquad a+b+a+b+a+b = 3a+3b$, so ababab is always divisible by $3$ } \)

 

\(\begin{array}{|l|r|r|r|r|} \hline &a & b & ab & ababab \\ \hline 1.& 1 & 0 & 10 & 101010 \\ 2.& 1 & 2 & 12 & 121212 \\ 3.& 1 & 4 & 14 & 141414 \\ 4.& 1 & 6 & 16 & 161616 \\ 5.& 1 & 8 & 18 & 181818 \\ \hline 6.& 2 & 0 & 20 & 202020 \\ 7.& 2 & 2 & 22 & 222222 \\ 8.& 2 & 4 & 24 & 242424 \\ 9.& 2 & 6 & 26 & 262626 \\ 10.& 2 & 8 & 28 & 282828 \\ \hline 11.& 3 & 0 & 30 & 303030 \\ 12.& 3 & 2 & 32 & 323232 \\ 13.& 3 & 4 & 34 & 343434 \\ 14.& 3 & 6 & 36 & 363636 \\ 15.& 3 & 8 & 38 & 383838 \\ \hline 16.& 4 & 0 & 40 & 404040 \\ 17.& 4 & 2 & 42 & 424242 \\ 18.& 4 & 4 & 44 & 444444 \\ 19.& 4 & 6 & 46 & 464646 \\ 20.& 4 & 8 & 48 & 484848 \\ \hline 21.& 5 & 0 & 50 & 505050 \\ 22.& 5 & 2 & 52 & 525252 \\ 23.& 5 & 4 & 54 & 545454 \\ 24.& 5 & 6 & 56 & 565656 \\ 25.& 5 & 8 & 58 & 585858 \\ \hline 26.& 6 & 0 & 60 & 606060 \\ 27.& 6 & 2 & 62 & 626262 \\ 28.& 6 & 4 & 64 & 646464 \\ 29.& 6 & 6 & 66 & 666666 \\ 30.& 6 & 8 & 68 & 686868 \\ \hline 31.& 7 & 0 & 70 & 707070 \\ 32.& 7 & 2 & 72 & 727272 \\ 33.& 7 & 4 & 74 & 747474 \\ 34.& 7 & 6 & 76 & 767676 \\ 35.& 7 & 8 & 78 & 787878 \\ \hline 36.& 8 & 0 & 80 & 808080 \\ 37.& 8 & 2 & 82 & 828282 \\ 38.& 8 & 4 & 84 & 848484 \\ 39.& 8 & 6 & 85 & 868686 \\ 40.& 8 & 8 & 88 & 888888 \\ \hline 41.& 9 & 0 & 90 & 909090 \\ 42.& 9 & 2 & 92 & 929292 \\ 43.& 9 & 4 & 94 & 949494 \\ 44.& 9 & 6 & 96 & 969696 \\ 45.& 9 & 8 & 98 & 989898 \\ \hline \end{array}\)

 

There are 45 possibilities for the original two-digit number.

 

laugh

heureka  Jul 24, 2018

28 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.