+0  
 
0
557
1
avatar

determine the value of k for which this equation has two real roots: kx^2+6x+5=0

 Nov 4, 2015

Best Answer 

 #1
avatar+26400 
+30

determine the value of k for which this equation has two real roots: kx^2+6x+5=0

 

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\\\\ D = b^2-4ac\)

 

discriminant  D > 0 ( two real roots )

 

a = k

b = 6

c = 5

 

D = 6*6 - 4*k*5

D = 36 -20k

 

D > 0 ( two real roots ):


\(\begin{array}{rcll} 36 - 20k &>& 0 \qquad &| \qquad -36\\ -20k &>& -36 \qquad &| \qquad \cdot(-1)\\ 20k &<& 36 \qquad &| \qquad :20\\ k &<& \frac{36}{20} \\ k &<& \frac{9}{5} \\ \mathbf{k} &\mathbf{<}& \mathbf{1.8} \\ \end{array}\)

laugh

 Nov 4, 2015
 #1
avatar+26400 
+30
Best Answer

determine the value of k for which this equation has two real roots: kx^2+6x+5=0

 

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\\\\ D = b^2-4ac\)

 

discriminant  D > 0 ( two real roots )

 

a = k

b = 6

c = 5

 

D = 6*6 - 4*k*5

D = 36 -20k

 

D > 0 ( two real roots ):


\(\begin{array}{rcll} 36 - 20k &>& 0 \qquad &| \qquad -36\\ -20k &>& -36 \qquad &| \qquad \cdot(-1)\\ 20k &<& 36 \qquad &| \qquad :20\\ k &<& \frac{36}{20} \\ k &<& \frac{9}{5} \\ \mathbf{k} &\mathbf{<}& \mathbf{1.8} \\ \end{array}\)

laugh

heureka Nov 4, 2015

1 Online Users

avatar