+0  
 
0
728
2
avatar+1495 

Help Me, please.

 

Inverse Functions: Express your answer in degrees, minutes, seconds to the nearest hundredth of a second.

 

Find the size of the angle that has a cosine of .4444.

 Apr 5, 2018
 #1
avatar+26393 
0

Inverse Functions: Express your answer in degrees, minutes, seconds to the nearest hundredth of a second.

 

1.

\(\begin{array}{|rcll|} \hline \cos(\varphi_1) &=& 0.4444 \\ \varphi_1 &=& \arccos(0.4444) \\ \varphi_1 &=& 63.6150426705^{\circ}\\ \varphi_1 &=& 63^{\circ}\ 36^{'}\ 54.15^{''}\\ \hline \end{array}\)

 

2.

\(\begin{array}{|rcll|} \hline \cos(\varphi_2) &=& 0.4444 \\ \varphi_2 &=& -\arccos(0.4444) + 360^{\circ} \\ \varphi_2 &=& -63.6150426705^{\circ} + 360^{\circ} \\ \varphi_2 &=& 296.384957330^{\circ} \\ \varphi_2 &=& 296^{\circ}\ 23^{'}\ 5.85^{''}\\ \hline \end{array}\)

 

laugh

 Apr 5, 2018
 #2
avatar+1495 
0

so what is the correct answer?

 Apr 5, 2018

0 Online Users