+0  
 
0
186
2
avatar+1397 

Help Me, please.

 

Inverse Functions: Express your answer in degrees, minutes, seconds to the nearest hundredth of a second.

 

Find the size of the angle that has a cosine of .4444.

 Apr 5, 2018
 #1
avatar+20812 
0

Inverse Functions: Express your answer in degrees, minutes, seconds to the nearest hundredth of a second.

 

1.

\(\begin{array}{|rcll|} \hline \cos(\varphi_1) &=& 0.4444 \\ \varphi_1 &=& \arccos(0.4444) \\ \varphi_1 &=& 63.6150426705^{\circ}\\ \varphi_1 &=& 63^{\circ}\ 36^{'}\ 54.15^{''}\\ \hline \end{array}\)

 

2.

\(\begin{array}{|rcll|} \hline \cos(\varphi_2) &=& 0.4444 \\ \varphi_2 &=& -\arccos(0.4444) + 360^{\circ} \\ \varphi_2 &=& -63.6150426705^{\circ} + 360^{\circ} \\ \varphi_2 &=& 296.384957330^{\circ} \\ \varphi_2 &=& 296^{\circ}\ 23^{'}\ 5.85^{''}\\ \hline \end{array}\)

 

laugh

 Apr 5, 2018
 #2
avatar+1397 
0

so what is the correct answer?

 Apr 5, 2018

35 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.