+0  
 
0
94
1
avatar+150 

The height (in meters) of a shot cannonball follows a trajectory given by h(t) = -4.9t^2 + 14t - 0.4 at time t (in seconds). As an improper fraction, for how long is the cannonball above a height of 6 meters?

xXxTenTacion  Aug 3, 2018
 #1
avatar+20025 
0

The height (in meters) of a shot cannonball follows a trajectory given by h(t) = -4.9t^2 + 14t - 0.4 at time t (in seconds).

As an improper fraction, for how long is the cannonball above a height of 6 meters?

 

\(\begin{array}{|rcll|} \hline -4.9t^2 + 14t - 0.4 &=& 6 \\ -4.9t^2 + 14t - 0.4 - 6 &=& 0 \quad & | \quad \\ -4.9t^2 + 14t - 6.4 &=& 0 \quad & | \quad \cdot (-1) \\ 4.9t^2 - 14t + 6.4 &=& 0 \\\\ t &=& \dfrac{14\pm \sqrt{14^2-4\cdot 4.9\cdot 6.4 } } { 2\cdot 4.9} \\\\ &=& \dfrac{14\pm \sqrt{196-125.44 } } {9.8} \\\\ &=& \dfrac{14\pm \sqrt{70.56} } {9.8} \\\\ &=& \dfrac{14\pm 8.4 } {9.8} \\\\ t_1 &=& \dfrac{14- 8.4 } {9.8} \\\\ \mathbf{t_1} & \mathbf{=} & \mathbf{ \dfrac{5.6 } {9.8} } \\\\ t_2 &=& \dfrac{14+ 8.4 } {9.8} \\\\ \mathbf{t_2} & \mathbf{=} & \mathbf{\dfrac{22.4} {9.8}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline t_2-t_1 &=& \dfrac{22.4} {9.8} - \dfrac{5.6 } {9.8} \\\\ &=& \dfrac{22.4-5.6} {9.8} \\\\ &=& \dfrac{16.8} {9.8} \\\\ &=& 1.71428571429\ \text{seconds} \\ \hline \end{array} \)

 

The cannonball is \(\approx 1.7\ \text{seconds} = (\dfrac{16.8} {9.8}\ \text{seconds})\)above a height of 6 meters?

 

 

laugh

heureka  Aug 3, 2018

11 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.