We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
142
6
avatar

[x/2]+[x/4]+[x/8]+507=x

[x/2],[x/4],[x/8]- INTEGER DIVISIONS!!!

 Feb 11, 2019
 #1
avatar+647 
-2

\(\frac{x}{2}+\frac{x}{4}+\frac{x}{8}=\frac{7x}{8}\), and this plus 507 equals x.

\(\frac{7x}{8}+507=x, \frac{x}{8}=507\)

Can you find x from here? Just multiply each side by eight.

 

You are very welcome!

:P

 Feb 11, 2019
 #2
avatar
0

U didn't know what mean integer division like me(

Guest Feb 11, 2019
 #3
avatar
0

I think by "Integer Division", you mean the "Floor Function"!.

Using Numberline graph, it gives the following solutions:

x =4039, 4043, 4045, 4046, 4049, 4050, 4052 and 4056.

 Feb 11, 2019
 #5
avatar
0

Yes, thx. I just from Russia and i didn't know how it translete right on Eng))) I just gave you the literal translation))

Guest Feb 12, 2019
 #6
avatar+22182 
+5

[x/2]+[x/4]+[x/8]+507=x

[x/2],[x/4],[x/8]- INTEGER DIVISIONS!!!

 

I assume the "Floor Function": \(\left\lfloor\dfrac{x}{2}\right\rfloor+\left\lfloor\dfrac{x}{4}\right\rfloor+\left\lfloor\dfrac{x}{8}\right\rfloor+507=x\)

 

So x is an integer.

 

We rearrange:

\(\left\lfloor\dfrac{4x}{8}\right\rfloor+\left\lfloor\dfrac{2x}{8}\right\rfloor+\left\lfloor\dfrac{x}{8}\right\rfloor+507=x \)

 

We substitute: \(y= \dfrac{x}{8}\)
\(\left\lfloor 4y \right\rfloor+\left\lfloor 2y \right\rfloor+\left\lfloor y \right\rfloor+507=x\)

 

\(\text{The fractional part of $\mathbf{y}$ is $\alpha$ and $0 < \alpha < 1$ } \\ \text{The integer part of $\mathbf{y}$ is $n$ }\\ \text{So $\mathbf{y = n+\alpha}$} \\ \text{$\mathbf{x = \lfloor 8y \rfloor} = \lfloor 8(n+\alpha)\rfloor=8n+\lfloor 8\alpha\rfloor$}\)

 

\(\begin{array}{|rcll|} \hline \left\lfloor 4(n+\alpha)\right\rfloor+\left\lfloor 2(n+\alpha) \right\rfloor+\left\lfloor n+\alpha\right\rfloor+507 &=& 8n+\lfloor 8\alpha\rfloor \\\\ \mathbf{\left\lfloor 4n+4\alpha\right\rfloor+\left\lfloor 2n+2\alpha \right\rfloor+\left\lfloor n+\alpha \right\rfloor+507}&\mathbf{=}& \mathbf{8n+\lfloor 8\alpha\rfloor} \\ \hline \end{array}\)

 

We divide alpha into 8 parts: 

\(0 < \alpha < \frac{1}{8},\ \frac{1}{8} \le \alpha < \frac{2}{8},\ \frac{2}{8} \le \alpha < \frac{3}{8},\ \frac{3}{8} \le \alpha < \frac{4}{8} ,\ \frac{4}{8} \le \alpha < \frac{5}{8},\ \frac{5}{8} \le \alpha < \frac{6}{8},\ \frac{6}{8} \le \alpha < \frac{7}{8},\ \frac{7}{8} \le \alpha < \frac{8}{8} \)

 

\(\begin{array}{|r|r|rcl|} \hline \text{part} & \text{domain} & \\ \hline 1. & 0 < \alpha < \frac{1}{8} & \left\lfloor 4n+4\alpha\right\rfloor+\left\lfloor 2n+2\alpha \right\rfloor+\left\lfloor n+\alpha \right\rfloor+507& =& 8n+\lfloor 8\alpha\rfloor \\ && 4n +2n+n+507 &=& 8n+0 \\ && n &=& 507 \\ && x &=& 8n + \lfloor 8\alpha\rfloor \\ && x &=& 8\cdot 507 \\ && \mathbf{x} & \mathbf{=} & \mathbf{4056} \\ \hline 2. & \frac{1}{8} \le \alpha < \frac{2}{8} & \left\lfloor 4n+4\alpha\right\rfloor+\left\lfloor 2n+2\alpha \right\rfloor+\left\lfloor n+\alpha \right\rfloor+507& =& 8n+\lfloor 8\alpha\rfloor \\ && 4n +2n+n+507 &=& 8n+1 \\ && n &=& 506 \\ && x &=& 8n + \lfloor 8\alpha\rfloor \\ && x &=& 8\cdot 506+1 \\ && \mathbf{x} & \mathbf{=} & \mathbf{4049} \\ \hline 3. & \frac{2}{8} \le \alpha < \frac{3}{8} & \left\lfloor 4n+4\alpha\right\rfloor+\left\lfloor 2n+2\alpha \right\rfloor+\left\lfloor n+\alpha \right\rfloor+507& =& 8n+\lfloor 8\alpha\rfloor \\ && 4n +1+2n+n+507 &=& 8n+2 \\ && n &=& 506 \\ && x &=& 8n + \lfloor 8\alpha\rfloor \\ && x &=& 8\cdot 506+2 \\ && \mathbf{x} & \mathbf{=} & \mathbf{4050} \\ \hline 4. & \frac{3}{8} \le \alpha < \frac{4}{8} & \left\lfloor 4n+4\alpha\right\rfloor+\left\lfloor 2n+2\alpha \right\rfloor+\left\lfloor n+\alpha \right\rfloor+507& =& 8n+\lfloor 8\alpha\rfloor \\ && 4n +1+2n+n+507 &=& 8n+3 \\ && n &=& 505 \\ && x &=& 8n + \lfloor 8\alpha\rfloor \\ && x &=& 8\cdot 505+3 \\ && \mathbf{x} & \mathbf{=} & \mathbf{4043} \\ \hline 5. & \frac{4}{8} \le \alpha < \frac{5}{8} & \left\lfloor 4n+4\alpha\right\rfloor+\left\lfloor 2n+2\alpha \right\rfloor+\left\lfloor n+\alpha \right\rfloor+507& =& 8n+\lfloor 8\alpha\rfloor \\ && 4n +2+2n+1+n+507 &=& 8n+4 \\ && n &=& 506 \\ && x &=& 8n + \lfloor 8\alpha\rfloor \\ && x &=& 8\cdot 506+4 \\ && \mathbf{x} & \mathbf{=} & \mathbf{4052} \\ \hline 6. & \frac{5}{8} \le \alpha < \frac{6}{8} & \left\lfloor 4n+4\alpha\right\rfloor+\left\lfloor 2n+2\alpha \right\rfloor+\left\lfloor n+\alpha \right\rfloor+507& =& 8n+\lfloor 8\alpha\rfloor \\ && 4n +2+2n+1+n+507 &=& 8n+5 \\ && n &=& 505 \\ && x &=& 8n + \lfloor 8\alpha\rfloor \\ && x &=& 8\cdot 505+5 \\ && \mathbf{x} & \mathbf{=} & \mathbf{4045} \\ \hline 7. & \frac{6}{8} \le \alpha < \frac{7}{8} & \left\lfloor 4n+4\alpha\right\rfloor+\left\lfloor 2n+2\alpha \right\rfloor+\left\lfloor n+\alpha \right\rfloor+507& =& 8n+\lfloor 8\alpha\rfloor \\ && 4n +3+2n+1+n+507 &=& 8n+6 \\ && n &=& 505 \\ && x &=& 8n + \lfloor 8\alpha\rfloor \\ && x &=& 8\cdot 505+6 \\ && \mathbf{x} & \mathbf{=} & \mathbf{4046} \\ \hline 8. & \frac{7}{8} \le \alpha < \frac{8}{8} & \left\lfloor 4n+4\alpha\right\rfloor+\left\lfloor 2n+2\alpha \right\rfloor+\left\lfloor n+\alpha \right\rfloor+507& =& 8n+\lfloor 8\alpha\rfloor \\ && 4n +3+2n+1+n+507 &=& 8n+7 \\ && n &=& 504 \\ && x &=& 8n + \lfloor 8\alpha\rfloor \\ && x &=& 8\cdot 504+7 \\ && \mathbf{x} & \mathbf{=} & \mathbf{4039} \\ \hline \end{array}\)

 

laugh

 Feb 12, 2019
edited by heureka  Feb 13, 2019

7 Online Users