+0  
 
+1
182
1
avatar+9 

Question #1

 

Question #2

 

Question #3

Question #4

 

Question #5

sillygirl77  Apr 27, 2018
 #1
avatar+91027 
+2

First one :

 

The slant height, h,  is  given by :

 

sin 60  = h / 8     multiply both sides by  8

 

8 * sin 60  =  h

 

8 * √3 / 2  = h

 

4√3 m  = h

 

 

Second one

 

The base area  is composed of 6 equilateral triangles.......

The total area  is  given  by :  6 (1/2) (14) (14) sin (60°)  =   3 * 196 *  √3/ 2   = 294√3 cm^2

 

 

Third one ;

 

The base area is a square with a side of 6 ft....so its area  = 6^2  = 36 ft^2

The sides are triangles  with   bases of 6 and heights of 3....and we have 4 of them....so their area  is just :

4 * (1/2) (6) * 3  =   36  ft^2

So the surface area  = [ 36 + 36 ] ft^2  = 72 ft^2

 

 

Fourth one :

 

The base is a square with a side  of 6.2 yd....so its area  is  (6.2)^2  =  38.44 yd^2

The sides are 4 equal area triangles.....their bases are 6.2 yds

Their heights, h,  can be found as   tan(60)  = h / (6.2 * (1/2) )

√3  =  h / 3.1       multiply both sides by 3.1

3.1 * √3   = h

So the area of each triangle  = (1/2) base) (height)  = (1/2) (6.2) * 3.1 * √3   ≈ 16.645 yd^2

And we need to multiply ths by 4  =  66.58 yd^2

 

So...the total surface area  is   [  38.44 + 66.58  ] yds^2  ≈  105 yds^2

 

 

 

Last one ;

 

We have  8  equal area triangles comprising the lateral surface area .......we can find the height of each triangle as the hypotenuse of a right triangle with legs of 8.......this height  is :  √ [ 8^2 + 8^2 ]  = 8√2 cm

 

So....the total lateral surface  area  is

 

8 * (1/2) base of each triangle * its  height   =

 

8 * (1/2) * 6.6 * 8√2   =  

 

4 * 6.6 * 8√2  =  298.7 cm^2

 

 

cool cool cool

CPhill  Apr 27, 2018

9 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.