We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
139
2
avatar+478 

If a, b, and c are positive integers less than 13 such that

\(\begin{align*} 2ab+bc+ca&\equiv 0\pmod{13}\\ ab+2bc+ca&\equiv 6abc\pmod{13}\\ ab+bc+2ca&\equiv 8abc\pmod {13} \end{align*}\)

then determine the remainder when a+b+c is divided by 13.

 Jul 21, 2019
 #1
avatar+28159 
+4

Here's a rough and ready way to tackle this:

 

Notice that if b = 2a and c = 3a the left hand side of the first equation becomes 4a2 + 6a2 + 3a2 = 13a2

In other words it is a multiple of 13 and hence satisfies the first equation.

 

For this situation, if a, b and c are all positive integers less than 13, then a can only be one of 1, 2, 3 or 4.

 

Trying these in turn we find that only a = 3 (hence b = 6 and c = 9) satisfy the second and third equations.

 

Hence a + b + c  =  5 mod(13)  

 Jul 21, 2019
edited by Alan  Jul 21, 2019
 #2
avatar+23137 
+4

If a, b, and c are positive integers less than 13 such that
\(\large{\begin{align*} 2ab+bc+ca&\equiv 0\pmod{13}\\ ab+2bc+ca&\equiv 6abc\pmod{13}\\ ab+bc+2ca&\equiv 8abc\pmod {13} \end{align*}}\)
then determine the remainder when a+b+c is divided by 13.

 

\(\begin{array}{|lrcll|} \hline & 2ab+bc+ca &\equiv& 0\pmod{13} \quad |\quad : (abc)\\ (1) & \dfrac{2}{c} + \dfrac{1}{a} + \dfrac{1}{b} &\equiv& 0 \pmod{13} \\ \hline & ab +2bc+ ca &\equiv& 6abc\pmod{13} \quad |\quad : (abc)\\ (2) & \dfrac{1}{c} + \dfrac{2}{a} + \dfrac{1}{b} &\equiv& 6 \pmod{13} \\ \hline & ab + bc+2ca &\equiv& 8abc\pmod{13} \quad |\quad : (abc)\\ (3) & \dfrac{1}{c} + \dfrac{1}{a} + \dfrac{2}{b} &\equiv& 8 \pmod{13} \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline 3*(1)-(2)-(3): & 3*\left( \dfrac{2}{c} + \dfrac{1}{a} + \dfrac{1}{b}\right) \\ & -\left( \dfrac{1}{c} + \dfrac{2}{a} + \dfrac{1}{b}\right) \\ & -\left( \dfrac{1}{c} + \dfrac{1}{a} + \dfrac{2}{b}\right) \\ & &\equiv& 3*0 - 6 - 8 \pmod{13} \\ & \dfrac{6}{c} + \dfrac{3}{a} + \dfrac{3}{b} \\ & -\dfrac{1}{c} - \dfrac{2}{a} - \dfrac{1}{b} \\ & -\dfrac{1}{c} - \dfrac{1}{a} - \dfrac{2}{b} \\ & &\equiv& -14 \pmod{13} \\ & \dfrac{4}{c} &\equiv& -14 \pmod{13} \\ & \dfrac{4}{c} &\equiv& 13-14 \pmod{13} \\ & \dfrac{4}{c} &\equiv& -1 \pmod{13} \quad | \quad +1 \\ & \dfrac{4}{c}+1 &\equiv& 0 \pmod{13} \quad | \quad *c \\ & 4+c &\equiv& 0 \pmod{13} \quad | \quad -4 \\ & c &\equiv& -4 \pmod{13} \\ & c &\equiv& 13-4 \pmod{13} \\ & \mathbf{ c } &\equiv& \mathbf{ 9 \pmod{13} } \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline 3*(3)-(2)-(1): & 3*\left( \dfrac{1}{c} + \dfrac{1}{a} + \dfrac{2}{b}\right) \\ & -\left( \dfrac{1}{c} + \dfrac{2}{a} + \dfrac{1}{b}\right) \\ & -\left( \dfrac{2}{c} + \dfrac{1}{a} + \dfrac{1}{b}\right) \\ & &\equiv& 3*8 - 6 - 0 \pmod{13} \\ & \dfrac{3}{c} + \dfrac{3}{a} + \dfrac{6}{b} \\ & -\dfrac{1}{c} - \dfrac{2}{a} - \dfrac{1}{b} \\ & -\dfrac{2}{c} - \dfrac{1}{a} - \dfrac{1}{b} \\ & &\equiv& 18 \pmod{13} \\ & \dfrac{4}{b} &\equiv& 18-13 \pmod{13} \\ & \dfrac{4}{b} &\equiv& 5 \pmod{13} \quad | \quad -5 \\ & \dfrac{4}{b}-5 &\equiv& 0 \pmod{13} \quad | \quad *b \\ & 4-5b &\equiv& 0 \pmod{13} \quad | \quad *(-1) \\ & 5b &\equiv& 0 \pmod{13} \quad | \quad +4 \\ & 5b &\equiv& 4 \pmod{13} \quad | \quad : 5 \\ & b &\equiv& 4*\dfrac{1}{5} \pmod{13} \\ & && \boxed{\dfrac{1}{5} \pmod{13} \\ \equiv 5^{\varphi(13)-1}\pmod{13} \\ \equiv 5^{12-1}\pmod{13} \\ \equiv 5^{11}\pmod{13} \\ \equiv 48828125\pmod{13} \\ \equiv 8\pmod{13} } \\ & b &\equiv& 4*8 \pmod{13} \\ & b &\equiv& 32 \pmod{13} \\ & b &\equiv& 32-2*13 \pmod{13} \\ & b &\equiv& 6 \pmod{13} \\ & \mathbf{ b } &\equiv& \mathbf{ 6 \pmod{13} } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline 2ab+bc+ca &\equiv& 0\pmod{13} \quad & | \quad b=6, \ c=9 \\ 2a*6+6*9+9*a &\equiv& 0\pmod{13} \\ 21a+54 &\equiv& 0\pmod{13} \quad & | \quad 21\equiv 8\pmod{13},\ \quad 54\equiv 2\pmod{13} \\ 8a +2 &\equiv& 0\pmod{13} \quad & | \quad :2 \\ 4a+1 &\equiv& 0 \pmod{13} \quad & | \quad -1 \\ 4a &\equiv& -1 \pmod{13} \quad | \quad : 4 \\ a &\equiv& (-1)*\dfrac{1}{4} \pmod{13} \\ && \boxed{\dfrac{1}{4} \pmod{13} \\ \equiv 4^{\varphi(13)-1}\pmod{13} \\ \equiv 4^{12-1}\pmod{13} \\ \equiv 4^{11}\pmod{13} \\ \equiv 4194304\pmod{13} \\ \equiv 10\pmod{13} } \\ a &\equiv& (-1)*10 \pmod{13} \\ a &\equiv& -10 \pmod{13} \\ a &\equiv& 13-10 \pmod{13} \\ \mathbf{ a } &\equiv& \mathbf{ 3 \pmod{13} } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline && \mathbf{a+b+c \pmod{13}} \\ &\equiv& 3+6+9 \pmod{13} \\ &\equiv& 18 \pmod{13} \\ &\equiv& 18-13 \pmod{13} \\ &\equiv& \mathbf{ 5 \pmod{13} } \\ \hline \end{array}\)

 

laugh

 Jul 21, 2019

34 Online Users

avatar
avatar