Solve $\frac{1}{3} t - 5 < t - 2 \le -3t + 7.$ Give your answer as an interval.
Steps:
\(\frac{1}{3}t-5
\(\frac{1}{3}t-5<\:t-2\quad \::\:t>\:-\frac{9}{2}\)
\(t-2\le -3t+7\:\:\:\:\:\::\:t\le \frac{9}{4} \)
\(t>-\frac{9}{2}\quad \mathrm{and}\quad \:t\le \frac{9}{4}\)
\(-\frac{9}{2}
\(\:(-\frac{9}{2},\:\frac{9}{4}]\)
Hope this helps!
Steps:
\(\frac{1}{3}t-5
\(\frac{1}{3}t-5<\:t-2\quad \::\:t>\:-\frac{9}{2}\)
\(t-2\le -3t+7\:\:\:\:\:\::\:t\le \frac{9}{4} \)
\(t>-\frac{9}{2}\quad \mathrm{and}\quad \:t\le \frac{9}{4}\)
\(-\frac{9}{2}
\(\:(-\frac{9}{2},\:\frac{9}{4}]\)
Hope this helps!