We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
87
2
avatar

How many positive integers n with \(n\le 500\) have square roots that can be expressed in the form \(a\sqrt{b}\) where a and b are integers with\(a\ge 10\) ?

 Feb 17, 2019
 #1
avatar
+1

There are 23 such numbers as follows:

(100, 121, 144, 169, 196, 200, 225, 242, 256, 288, 289, 300, 324, 338, 361, 363, 392, 400, 432, 441, 450, 484, 500) =23 such numbers.

You can write each number as: 100 =10sqrt(1), 200 =10Sqrt(2), 288=12sqrt(2)......and so on.

 Feb 17, 2019
 #2
avatar
+1

Thank you

 Feb 17, 2019

35 Online Users

avatar
avatar