+0  
 
0
80
2
avatar

Find all values of $t$ that satisfy $\dfrac{t+4}{t+5} = \dfrac{t-5}{2t}$. If you find more than one, then list the values separated by commas. If the solutions are not real, then they should be written in $a + bi$ form.

 Mar 22, 2020

Best Answer 

 #1
avatar+23710 
+2

(t+4)/(t+5) = (t-5)/2t    multiply  through by    2t(t+5)

 

2t( t+4) = (t-5)(t+5)

2t^2 + 8t  = t^2 - 25       re-arrange

t^2 + 8t + 25 = 0       Use quadratic formula to find   t = -4 +- 3i

 Mar 22, 2020
 #1
avatar+23710 
+2
Best Answer

(t+4)/(t+5) = (t-5)/2t    multiply  through by    2t(t+5)

 

2t( t+4) = (t-5)(t+5)

2t^2 + 8t  = t^2 - 25       re-arrange

t^2 + 8t + 25 = 0       Use quadratic formula to find   t = -4 +- 3i

ElectricPavlov Mar 22, 2020
 #2
avatar+1970 
+2

I agree! Nice job, EP!

CalTheGreat  Mar 23, 2020

9 Online Users