+0  
 
0
46
2
avatar+366 

Help Me Please.

 

Power:Raise to the power indicated.

 

(5x2 -  ab)3

ManuelBautista2019  Jan 23, 2018
Sort: 

2+0 Answers

 #1
avatar
+1

Expand the following:

(5 x^2 - a b)^3

 

Expand (5 x^2 - a b)^3 using the binomial expansion theorem.

(5 x^2 - a b)^3 = sum_(k=0)^3 binomial(3, k) (5 x^2)^(3 - k) (-a b)^k = binomial(3, 0) (5 x^2)^3 (-a b)^0 + binomial(3, 1) (5 x^2)^2 (-a b)^1 + binomial(3, 2) (5 x^2)^1 (-a b)^2 + binomial(3, 3) (5 x^2)^0 (-a b)^3:

125 binomial(3, 0) x^6 - 25 binomial(3, 1) a b x^4 + 5 binomial(3, 2) a^2 b^2 x^2 - binomial(3, 3) a^3 b^3

 

Evaluate the binomial coefficients by looking at Pascal's triangle

(-a b)^3 + 5×3 (-a b)^2 x^2 - 3 a b (5 x^2)^2 + (5 x^2)^3

 

(-a b)^3 + 5×3×(-1)^2 a^2 b^2 x^2 - 3 a b (5 x^2)^2 + (5 x^2

(-a b)^3 + 5×3 a^2 b^2 x^2 - 3 a b (5 x^2)^2 + (5 x^2)^3

 

(-a b)^3 + 5×3 a^2 b^2 x^2 - 3 a b×5^2 x^(2×2) + (5 x^2)^3

 

(-a b)^3 + 5×3 a^2 b^2 x^2 - 5^2×3 a b x^4 + (5 x^2)^3

 

(-a b)^3 + 5×3 a^2 b^2 x^2 - 25×3 a b x^4 + (5 x^2)^3

 

(-1)^3 a^3 b^3 + 5×3 a^2 b^2 x^2 - 25×3 a b x^4 +

-1 a^3 b^3 + 5×3 a^2 b^2 x^2 - 25×3 a b x^4 + (5 x^2)^3

 

-(a^3 b^3) + 15 a^2 b^2 x^2 - 25×3 a b x^4 + (5 x^2)^3

 

-(a^3 b^3) + 15 a^2 b^2 x^2 + -75 a b x^4 + (5 x^2)^3

 

-(a^3 b^3) + 15 a^2 b^2 x^2 - 75 a b x^4 + 5^3 x^(3×2)

 

-(a^3 b^3) + 15 a^2 b^2 x^2 - 75 a b x^4 + 5^3 x^6

 

-(a^3 b^3) + 15 a^2 b^2 x^2 - 75 a b x^4 + 5×5^2 x^6

 

-(a^3 b^3) + 15 a^2 b^2 x^2 - 75 a b x^4 + 5×25 x^6

 

-(a^3 b^3) + 15a^2b^2x^2 - 75abx^4 + 125x^6

Guest Jan 23, 2018
 #2
avatar+82489 
+1

(5x^2  - ab)^3     

 

Let  a  =  5x^2         and  b  =   (ab)  

 

So     (a  - b)^3   =   a^3  -  3a^2b   +  3ab^2 -  b^3

 

So we have

 

1 * (5x^2)^3  -   3(5x^2)^2*ab  +  3(5x^2)*(ab)^2 -  1(ab)^3  =

 

125x^6  -  75x^4ab  +  15x^2(ab)^2  - (ab)^3

 

 

cool cool cool

CPhill  Jan 23, 2018

4 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details