+0  
 
0
129
2
avatar+1317 

Help Me Please.

 

Power:Raise to the power indicated.

 

(5x2 -  ab)3

ManuelBautista2019  Jan 23, 2018
 #1
avatar
+1

Expand the following:

(5 x^2 - a b)^3

 

Expand (5 x^2 - a b)^3 using the binomial expansion theorem.

(5 x^2 - a b)^3 = sum_(k=0)^3 binomial(3, k) (5 x^2)^(3 - k) (-a b)^k = binomial(3, 0) (5 x^2)^3 (-a b)^0 + binomial(3, 1) (5 x^2)^2 (-a b)^1 + binomial(3, 2) (5 x^2)^1 (-a b)^2 + binomial(3, 3) (5 x^2)^0 (-a b)^3:

125 binomial(3, 0) x^6 - 25 binomial(3, 1) a b x^4 + 5 binomial(3, 2) a^2 b^2 x^2 - binomial(3, 3) a^3 b^3

 

Evaluate the binomial coefficients by looking at Pascal's triangle

(-a b)^3 + 5×3 (-a b)^2 x^2 - 3 a b (5 x^2)^2 + (5 x^2)^3

 

(-a b)^3 + 5×3×(-1)^2 a^2 b^2 x^2 - 3 a b (5 x^2)^2 + (5 x^2

(-a b)^3 + 5×3 a^2 b^2 x^2 - 3 a b (5 x^2)^2 + (5 x^2)^3

 

(-a b)^3 + 5×3 a^2 b^2 x^2 - 3 a b×5^2 x^(2×2) + (5 x^2)^3

 

(-a b)^3 + 5×3 a^2 b^2 x^2 - 5^2×3 a b x^4 + (5 x^2)^3

 

(-a b)^3 + 5×3 a^2 b^2 x^2 - 25×3 a b x^4 + (5 x^2)^3

 

(-1)^3 a^3 b^3 + 5×3 a^2 b^2 x^2 - 25×3 a b x^4 +

-1 a^3 b^3 + 5×3 a^2 b^2 x^2 - 25×3 a b x^4 + (5 x^2)^3

 

-(a^3 b^3) + 15 a^2 b^2 x^2 - 25×3 a b x^4 + (5 x^2)^3

 

-(a^3 b^3) + 15 a^2 b^2 x^2 + -75 a b x^4 + (5 x^2)^3

 

-(a^3 b^3) + 15 a^2 b^2 x^2 - 75 a b x^4 + 5^3 x^(3×2)

 

-(a^3 b^3) + 15 a^2 b^2 x^2 - 75 a b x^4 + 5^3 x^6

 

-(a^3 b^3) + 15 a^2 b^2 x^2 - 75 a b x^4 + 5×5^2 x^6

 

-(a^3 b^3) + 15 a^2 b^2 x^2 - 75 a b x^4 + 5×25 x^6

 

-(a^3 b^3) + 15a^2b^2x^2 - 75abx^4 + 125x^6

Guest Jan 23, 2018
 #2
avatar+87677 
+1

(5x^2  - ab)^3     

 

Let  a  =  5x^2         and  b  =   (ab)  

 

So     (a  - b)^3   =   a^3  -  3a^2b   +  3ab^2 -  b^3

 

So we have

 

1 * (5x^2)^3  -   3(5x^2)^2*ab  +  3(5x^2)*(ab)^2 -  1(ab)^3  =

 

125x^6  -  75x^4ab  +  15x^2(ab)^2  - (ab)^3

 

 

cool cool cool

CPhill  Jan 23, 2018

28 Online Users

avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.