Help Me Please.
Power:Raise to the power indicated.
(5x2 - ab)3
Expand the following:
(5 x^2 - a b)^3
Expand (5 x^2 - a b)^3 using the binomial expansion theorem.
(5 x^2 - a b)^3 = sum_(k=0)^3 binomial(3, k) (5 x^2)^(3 - k) (-a b)^k = binomial(3, 0) (5 x^2)^3 (-a b)^0 + binomial(3, 1) (5 x^2)^2 (-a b)^1 + binomial(3, 2) (5 x^2)^1 (-a b)^2 + binomial(3, 3) (5 x^2)^0 (-a b)^3:
125 binomial(3, 0) x^6 - 25 binomial(3, 1) a b x^4 + 5 binomial(3, 2) a^2 b^2 x^2 - binomial(3, 3) a^3 b^3
Evaluate the binomial coefficients by looking at Pascal's triangle
(-a b)^3 + 5×3 (-a b)^2 x^2 - 3 a b (5 x^2)^2 + (5 x^2)^3
(-a b)^3 + 5×3×(-1)^2 a^2 b^2 x^2 - 3 a b (5 x^2)^2 + (5 x^2
(-a b)^3 + 5×3 a^2 b^2 x^2 - 3 a b (5 x^2)^2 + (5 x^2)^3
(-a b)^3 + 5×3 a^2 b^2 x^2 - 3 a b×5^2 x^(2×2) + (5 x^2)^3
(-a b)^3 + 5×3 a^2 b^2 x^2 - 5^2×3 a b x^4 + (5 x^2)^3
(-a b)^3 + 5×3 a^2 b^2 x^2 - 25×3 a b x^4 + (5 x^2)^3
(-1)^3 a^3 b^3 + 5×3 a^2 b^2 x^2 - 25×3 a b x^4 +
-1 a^3 b^3 + 5×3 a^2 b^2 x^2 - 25×3 a b x^4 + (5 x^2)^3
-(a^3 b^3) + 15 a^2 b^2 x^2 - 25×3 a b x^4 + (5 x^2)^3
-(a^3 b^3) + 15 a^2 b^2 x^2 + -75 a b x^4 + (5 x^2)^3
-(a^3 b^3) + 15 a^2 b^2 x^2 - 75 a b x^4 + 5^3 x^(3×2)
-(a^3 b^3) + 15 a^2 b^2 x^2 - 75 a b x^4 + 5^3 x^6
-(a^3 b^3) + 15 a^2 b^2 x^2 - 75 a b x^4 + 5×5^2 x^6
-(a^3 b^3) + 15 a^2 b^2 x^2 - 75 a b x^4 + 5×25 x^6
-(a^3 b^3) + 15a^2b^2x^2 - 75abx^4 + 125x^6