We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
236
2
avatar+1417 

Help Me Please.

 

Power:Raise to the power indicated.

 

(5x2 -  ab)3

 Jan 23, 2018
 #1
avatar
+1

Expand the following:

(5 x^2 - a b)^3

 

Expand (5 x^2 - a b)^3 using the binomial expansion theorem.

(5 x^2 - a b)^3 = sum_(k=0)^3 binomial(3, k) (5 x^2)^(3 - k) (-a b)^k = binomial(3, 0) (5 x^2)^3 (-a b)^0 + binomial(3, 1) (5 x^2)^2 (-a b)^1 + binomial(3, 2) (5 x^2)^1 (-a b)^2 + binomial(3, 3) (5 x^2)^0 (-a b)^3:

125 binomial(3, 0) x^6 - 25 binomial(3, 1) a b x^4 + 5 binomial(3, 2) a^2 b^2 x^2 - binomial(3, 3) a^3 b^3

 

Evaluate the binomial coefficients by looking at Pascal's triangle

(-a b)^3 + 5×3 (-a b)^2 x^2 - 3 a b (5 x^2)^2 + (5 x^2)^3

 

(-a b)^3 + 5×3×(-1)^2 a^2 b^2 x^2 - 3 a b (5 x^2)^2 + (5 x^2

(-a b)^3 + 5×3 a^2 b^2 x^2 - 3 a b (5 x^2)^2 + (5 x^2)^3

 

(-a b)^3 + 5×3 a^2 b^2 x^2 - 3 a b×5^2 x^(2×2) + (5 x^2)^3

 

(-a b)^3 + 5×3 a^2 b^2 x^2 - 5^2×3 a b x^4 + (5 x^2)^3

 

(-a b)^3 + 5×3 a^2 b^2 x^2 - 25×3 a b x^4 + (5 x^2)^3

 

(-1)^3 a^3 b^3 + 5×3 a^2 b^2 x^2 - 25×3 a b x^4 +

-1 a^3 b^3 + 5×3 a^2 b^2 x^2 - 25×3 a b x^4 + (5 x^2)^3

 

-(a^3 b^3) + 15 a^2 b^2 x^2 - 25×3 a b x^4 + (5 x^2)^3

 

-(a^3 b^3) + 15 a^2 b^2 x^2 + -75 a b x^4 + (5 x^2)^3

 

-(a^3 b^3) + 15 a^2 b^2 x^2 - 75 a b x^4 + 5^3 x^(3×2)

 

-(a^3 b^3) + 15 a^2 b^2 x^2 - 75 a b x^4 + 5^3 x^6

 

-(a^3 b^3) + 15 a^2 b^2 x^2 - 75 a b x^4 + 5×5^2 x^6

 

-(a^3 b^3) + 15 a^2 b^2 x^2 - 75 a b x^4 + 5×25 x^6

 

-(a^3 b^3) + 15a^2b^2x^2 - 75abx^4 + 125x^6

 Jan 23, 2018
 #2
avatar+101084 
+1

(5x^2  - ab)^3     

 

Let  a  =  5x^2         and  b  =   (ab)  

 

So     (a  - b)^3   =   a^3  -  3a^2b   +  3ab^2 -  b^3

 

So we have

 

1 * (5x^2)^3  -   3(5x^2)^2*ab  +  3(5x^2)*(ab)^2 -  1(ab)^3  =

 

125x^6  -  75x^4ab  +  15x^2(ab)^2  - (ab)^3

 

 

cool cool cool

 Jan 23, 2018

7 Online Users

avatar
avatar
avatar