We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# Help me

0
626
5

I'm behind in math and I need some help with these

1. 2. 3. 4. 5. Feb 8, 2018

### 5+0 Answers

#1
+1

1.  Freq  =  1 / [ 6pi]

The frequency  is  1 / period....so the period is 6pi....

In the form   y  = Asin (Bx)  + C

Amplitude  = 2  = A

Midline     .....y  = 3    =  C

To find B

B  = 2pi/ period  =   2pi / 6pi   =  1/3

y -intercept  =  (0, 3)

The function is :

y  = 2sin ( (1/3) x)  + 3

Here's the graph :   https://www.desmos.com/calculator/8hza0yorxy   Feb 8, 2018
edited by CPhill  Feb 8, 2018
#2
+1

2.

In the form Asin(Bx)  + C

Amplitude  = 2  = A

Midline  y  = 3  =  C

To find B   =   2pi/ period  =  2pi / 4pi   =  1/2

y intercept  (0, 3)

The function  is :

y  =  2sin( (1/2) x ) + 3

Note  that the parent function is :

y  = -2sin ( (1/2) x )  -  3

Here's the graph of both : https://www.desmos.com/calculator/xnb8aumkek   Feb 8, 2018
edited by CPhill  Feb 8, 2018
#3
+1

3.

In the form   y  = Asin (Bx)  + C

Period   =  4     we need to  find "B"  thusly

B  = 2pi / period   = 2pi/ 4  =  pi / 2

A  is the amplitude  =  4

C  is the shift of the midline from y  = 0.....thus.....the shift is 1 unit upward.....so C  = 1

The function is

y  = 4sin (pi * x / 2)  + 1

Here's the graph :   Feb 8, 2018
#4
+1

4.

y  = Asin(Bx + C )

A  =  the amplitude  =  [ difference in high/low/point ] / 2  =  6 / 2  =   3

The period is   20sec...so B  =

2pi / period  = 2pi / 20  = pi / 10

Since the sine graph starts at its highest position...the is a shift of pi/2 units to the left....thus  C  = pi/2

The function is :

y = 3sin ((pi/10) x   +  pi/2 )

The only question I have about this one is  at the beginning of the observation, x = 0 and the weight will be at its  highest point......thus.....the graph's first point will not be at the midline......that occurs 5 seconds later....   Feb 8, 2018
edited by CPhill  Feb 8, 2018
#5
+1

5.

We  have this

y  = Asin (Bx) + C

A is the amplitude  =  5

The midline here is shifted down 8 units from normal.....thus  C  = -8

To find B  we have

B  = 2pi / period    =  2pi / 16  =  pi / 8

So  the function is

y  = 5 sin ( ( pi/ 8)  x )  - 8

Here's the graph :    https://www.desmos.com/calculator/vhovcnbzy3   Feb 8, 2018