+0  
 
0
42
1
avatar

1. Find constants $A$ and $B$ such that \[\frac{x + 7}{x^2 - x - 2} = \frac{A}{x - 2} + \frac{B}{x + 1}\] for all $x$ such that $x\neq -1$ and $x\neq 2$. Give your answer as the ordered pair $(A,B)$.

 

2. a) Suppose that \[|a - b| + |b - c| + |c - a| = 20.\] What is the maximum possible value of $|a - b|$?

b) Suppose that \[|a - b| + |b - c| + |c - d| + \dots + |m-n| + |n-o| + \cdots+ |x - y| + |y - z| + |z - a| = 20.\] What is the maximum possible value of $|a - n|$?

Guest Apr 23, 2018
Sort: 

1+0 Answers

 #1
avatar+86568 
+2

\( \frac{x + 7}{x^2 - x - 2} = \frac{A}{x - 2} + \frac{B}{x + 1}\)

 

We can use partial fraction decmposition to find A, B

Factoring the denominator on the left side  we have   (x - 2) ( x + 1)

Multiply through by this common denominator  and we have

 

x + 7  =  A(x + 1)  + B(x - 2)   simplify

 

x + 7  =  Ax + A  + BX  - 2B        equate coefficients  and we get this system

 

A + B  = 1

A - 2B  = 7       subtract the second equation from the first

 

3B  = -6     divide both sides  by 3

B  = -2

 

Using the first equation to  find A

A +  -2   = 1         add 2 to  both sides

A  = 3

 

So  (A, B )   =  ( 3, -2)

 

 

cool cool cool 

CPhill  Apr 23, 2018

23 Online Users

avatar
avatar
avatar
avatar
avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy