+0

# Help me

0
222
1

1. Find constants $A$ and $B$ such that $\frac{x + 7}{x^2 - x - 2} = \frac{A}{x - 2} + \frac{B}{x + 1}$ for all $x$ such that $x\neq -1$ and $x\neq 2$. Give your answer as the ordered pair $(A,B)$.

2. a) Suppose that $|a - b| + |b - c| + |c - a| = 20.$ What is the maximum possible value of $|a - b|$?

b) Suppose that $|a - b| + |b - c| + |c - d| + \dots + |m-n| + |n-o| + \cdots+ |x - y| + |y - z| + |z - a| = 20.$ What is the maximum possible value of $|a - n|$?

Apr 23, 2018

#1
+101151
+2

$$\frac{x + 7}{x^2 - x - 2} = \frac{A}{x - 2} + \frac{B}{x + 1}$$

We can use partial fraction decmposition to find A, B

Factoring the denominator on the left side  we have   (x - 2) ( x + 1)

Multiply through by this common denominator  and we have

x + 7  =  A(x + 1)  + B(x - 2)   simplify

x + 7  =  Ax + A  + BX  - 2B        equate coefficients  and we get this system

A + B  = 1

A - 2B  = 7       subtract the second equation from the first

3B  = -6     divide both sides  by 3

B  = -2

Using the first equation to  find A

A +  -2   = 1         add 2 to  both sides

A  = 3

So  (A, B )   =  ( 3, -2)

Apr 23, 2018