We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
40
2
avatar

\(\)A function $f$ has a horizontal asymptote of $y = -4,$ a vertical asymptote of $x = 3,$ and an $x$-intercept at $(1,0).$ Part (a): Let $f$ be of the form $$f(x) = \frac{ax+b}{x+c}.$$Find an expression for $f(x).$ Part (b): Let $f$ be of the form $$f(x) = \frac{rx+s}{2x+t}.$$Find an expression for $f(x).$

 Nov 19, 2019
 #1
avatar+105370 
+1

If the first function has a horizontal asymptote at  y  =-4

Then the ratio of the coefficients on x in the numerator and denominator is   a / 1  = -4

So a  = -4

 

If it has an x itercept at (1,0)....then   

-4(1) +  b  = 0

-4 + b  = 0

b = 4

 

And if it has a vertical asymptote at 3.....then

3 + c   =0

c = -3

 

So   the function is  

 

             -4x + 4

f(x)  =    _____

               x - 3

 

Here is a graph :    https://www.desmos.com/calculator/pe4jejs6zo

 

 

cool cool cool

 Nov 19, 2019
 #2
avatar+105370 
+1

The second one uses similar reasoning

 

r / 2  = -4

r = -8

 

-8 ( 1)  + s  = 0

-8 + s  = 0

s = 8

 

2(3) + t  = 0

6 + t  = 0

t = -6

 

 

So

 

               -8x  +  8     

f(x)  =    ________

                2x  -   6

 

Here is the graph : https://www.desmos.com/calculator/oo1vhoudky

 

 

cool cool cool

 Nov 19, 2019

25 Online Users

avatar