We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
83
1
avatar

Two distinct, real, infinite geometric series each have a sum of 1 and have the same second term. The third term of one of the series is 1/8. Find all possible values for the second term of both series.

 Sep 11, 2019

Best Answer 

 #1
avatar+23354 
+2

Two distinct, real, infinite geometric series each have a sum of 1 and have the same second term.

The third term of one of the series is 1/8. 

Find all possible values for the second term of both series.

 

1. geometric serie: \(s_1 = a+ar_1+ar_1^2+\ldots\)

2. geometric serie: \(s_2 = b+br_2+br_2^2+\ldots\)

 

The same second term: \( ar_1= br_2=x \)

 

Sum of 1:

\(\begin{array}{|rcll|} \hline s_1 = 1 &=& \dfrac{a}{1-r_1} \quad | \quad \Rightarrow \boxed{r_1=1-a} \\ s_2 = 1 &=& \dfrac{b}{1-r_2} \quad | \quad \Rightarrow \boxed{r_2=1-b\quad \text{or} \quad b=1-r_2 } \\ \hline \end{array}\)

 

The third term of one of the series is \(\dfrac{1}{8}\):

\(\begin{array}{|lrcll|} \hline & br_2^2 &=& \dfrac{1}{8} \\ & br_2r_2 &=& \dfrac{1}{8} \\ & r_2 &=& \dfrac{1}{8br_2} \quad | \quad br_2 = x \\ (1) & \mathbf{r_2} &=& \mathbf{\dfrac{1}{8x}} \quad | \quad r_2=1-b \\ & 1-b &=& \dfrac{1}{8x} \\ (2) &\mathbf{b} &=& \mathbf{1- \dfrac{1}{8x}} \\ \hline (2) \times(1) & \mathbf{br_2 } &=& \mathbf{\left(1- \dfrac{1}{8x} \right)\dfrac{1}{8x} } \quad | \quad br_2=x \\ & x &=& \left(1- \dfrac{1}{8x} \right)\dfrac{1}{8x} \\ & 8x^2 &=& 1- \dfrac{1}{8x} \quad | \quad \cdot 8x \\ & 64x^3 &=& 8x - 1 \\ &\mathbf{64x^3-8x+1} &=& \mathbf{0} \\\\ & \mathbf{x_1} &=& \mathbf{\dfrac{1}{4}} \\ & \mathbf{x_2} &=& \mathbf{-\dfrac{1}{8}\left( \sqrt{5} + 1 \right)} \\ & \mathbf{x_3} &=& \mathbf{\dfrac{1}{8}\left( \sqrt{5} - 1 \right)} \\ \hline \end{array}\)

 

Summary:

\(\begin{array}{|lrcll|} \hline & \mathbf{x_1} &=& \mathbf{\dfrac{1}{4}} \\ & \mathbf{x_2} &=& \mathbf{-\dfrac{1}{8}\left( \sqrt{5} + 1 \right)} \\ & \mathbf{x_3} &=& \mathbf{\dfrac{1}{8}\left( \sqrt{5} - 1 \right)} \\ \hline (1) & \mathbf{r_2} &=& \mathbf{\dfrac{1}{8x}} \\ (3) & \mathbf{b} &=& \mathbf{ 1-r_2 } \\ \hline & ar_1 &=& x \quad | \quad r_1 = 1-a \\ & a(1-a) &=& x \\ & a^2-a+x &=& 0 \\ (4) & \mathbf{a} &=& \mathbf{\dfrac{1\pm \sqrt{1-4x}}{2}} \\ (5) & \mathbf{r_1} &=& \mathbf{ 1-a } \\ \hline \end{array}\)

 

\(\begin{array}{|l|r|r|r|c|} \hline & r_2= & b= & a= & r_1= & \text{distinct} \\ \hline \mathbf{x=\dfrac{1}{4}} & \dfrac{1}{2} & \dfrac{1}{2} & \dfrac{1}{2} & \dfrac{1}{2} & \text{no} \\ \hline \mathbf{x=-\dfrac{1}{8}\left( \sqrt{5} + 1 \right)} & \dfrac{1-\sqrt{5}}{4} & \dfrac{3+\sqrt{5}}{4} & b & r_2 & \text{no} \\ & & & r_2 & b & \text{yes} \\ \hline \mathbf{x_3=\dfrac{1}{8}\left( \sqrt{5} - 1 \right)} & \dfrac{1+\sqrt{5}}{4} & \dfrac{3-\sqrt{5}}{4} & b & r_2 & \text{no} \\ & & & r_2 & b & \text{yes} \\ \hline \end{array} \)

 

Solution 1:

\(\begin{array}{|l|} \hline \mathbf{x=-\dfrac{1}{8}\left( \sqrt{5} + 1 \right)} \\ a=r_2 = \dfrac{1-\sqrt{5}}{4} \\ r_1 = b = \dfrac{3+\sqrt{5}}{4} \\ b = \dfrac{3+\sqrt{5}}{4} \\ r_2 = \dfrac{1-\sqrt{5}}{4} \\ \hline a+ar_1+ar_1^2+\ldots = \left( \dfrac{1-\sqrt{5}}{4} \right) +\underbrace{\left(\dfrac{1-\sqrt{5}}{4}\right)\left(\dfrac{3+\sqrt{5}}{4}\right)}_{=x} +\left(\dfrac{1-\sqrt{5}}{4}\right)\left(\dfrac{3+\sqrt{5}}{4}\right)^2 +\ldots \\\\ b+br_2+br_2^2+\ldots = \left( \dfrac{3+\sqrt{5}}{4} \right) +\overbrace{\left(\dfrac{3+\sqrt{5}}{4} \right)\left(\dfrac{1-\sqrt{5}}{4}\right)}^{=x} +\underbrace{\left(\dfrac{3+\sqrt{5}}{4} \right)\left(\dfrac{1-\sqrt{5}}{4}\right)^2}_{=\dfrac{1}{8}} +\ldots \\ \hline \end{array}\)

 

Solution 2:

\(\begin{array}{|l|} \hline x=\mathbf{\dfrac{1}{8}\left( \sqrt{5} - 1 \right)} \\ a=r_2 = \dfrac{1+\sqrt{5}}{4} \\ r_1 = b = \dfrac{3-\sqrt{5}}{4} \\ b = \dfrac{3-\sqrt{5}}{4} \\ r_2 = \dfrac{1+\sqrt{5}}{4} \\ \hline a+ar_1+ar_1^2+\ldots = \left( \dfrac{1+\sqrt{5}}{4} \right) +\underbrace{\left(\dfrac{1+\sqrt{5}}{4}\right)\left(\dfrac{3-\sqrt{5}}{4}\right)}_{=x} +\left(\dfrac{1+\sqrt{5}}{4}\right)\left(\dfrac{3-\sqrt{5}}{4}\right)^2 +\ldots \\\\ b+br_2+br_2^2+\ldots = \left( \dfrac{3-\sqrt{5}}{4} \right) +\overbrace{\left(\dfrac{3-\sqrt{5}}{4} \right)\left(\dfrac{1+\sqrt{5}}{4}\right)}^{=x} +\underbrace{\left(\dfrac{3-\sqrt{5}}{4} \right)\left(\dfrac{1+\sqrt{5}}{4}\right)^2}_{=\dfrac{1}{8}} +\ldots \\ \hline \end{array}\)

 

Find all possible values for the second term of both series:

\(\begin{array}{|rcll|} \hline \text{The second term: } & \left(\dfrac{1-\sqrt{5}}{4}\right)\left(\dfrac{3+\sqrt{5}}{4}\right)&=&-\dfrac{1}{8}\left( \sqrt{5} + 1 \right) \\ \text{The second term: } & \left(\dfrac{1+\sqrt{5}}{4}\right)\left(\dfrac{3-\sqrt{5}}{4}\right)&=&\dfrac{1}{8}\left( \sqrt{5} - 1 \right) \\ \hline \end{array} \)

 

laugh

 Sep 12, 2019
 #1
avatar+23354 
+2
Best Answer

Two distinct, real, infinite geometric series each have a sum of 1 and have the same second term.

The third term of one of the series is 1/8. 

Find all possible values for the second term of both series.

 

1. geometric serie: \(s_1 = a+ar_1+ar_1^2+\ldots\)

2. geometric serie: \(s_2 = b+br_2+br_2^2+\ldots\)

 

The same second term: \( ar_1= br_2=x \)

 

Sum of 1:

\(\begin{array}{|rcll|} \hline s_1 = 1 &=& \dfrac{a}{1-r_1} \quad | \quad \Rightarrow \boxed{r_1=1-a} \\ s_2 = 1 &=& \dfrac{b}{1-r_2} \quad | \quad \Rightarrow \boxed{r_2=1-b\quad \text{or} \quad b=1-r_2 } \\ \hline \end{array}\)

 

The third term of one of the series is \(\dfrac{1}{8}\):

\(\begin{array}{|lrcll|} \hline & br_2^2 &=& \dfrac{1}{8} \\ & br_2r_2 &=& \dfrac{1}{8} \\ & r_2 &=& \dfrac{1}{8br_2} \quad | \quad br_2 = x \\ (1) & \mathbf{r_2} &=& \mathbf{\dfrac{1}{8x}} \quad | \quad r_2=1-b \\ & 1-b &=& \dfrac{1}{8x} \\ (2) &\mathbf{b} &=& \mathbf{1- \dfrac{1}{8x}} \\ \hline (2) \times(1) & \mathbf{br_2 } &=& \mathbf{\left(1- \dfrac{1}{8x} \right)\dfrac{1}{8x} } \quad | \quad br_2=x \\ & x &=& \left(1- \dfrac{1}{8x} \right)\dfrac{1}{8x} \\ & 8x^2 &=& 1- \dfrac{1}{8x} \quad | \quad \cdot 8x \\ & 64x^3 &=& 8x - 1 \\ &\mathbf{64x^3-8x+1} &=& \mathbf{0} \\\\ & \mathbf{x_1} &=& \mathbf{\dfrac{1}{4}} \\ & \mathbf{x_2} &=& \mathbf{-\dfrac{1}{8}\left( \sqrt{5} + 1 \right)} \\ & \mathbf{x_3} &=& \mathbf{\dfrac{1}{8}\left( \sqrt{5} - 1 \right)} \\ \hline \end{array}\)

 

Summary:

\(\begin{array}{|lrcll|} \hline & \mathbf{x_1} &=& \mathbf{\dfrac{1}{4}} \\ & \mathbf{x_2} &=& \mathbf{-\dfrac{1}{8}\left( \sqrt{5} + 1 \right)} \\ & \mathbf{x_3} &=& \mathbf{\dfrac{1}{8}\left( \sqrt{5} - 1 \right)} \\ \hline (1) & \mathbf{r_2} &=& \mathbf{\dfrac{1}{8x}} \\ (3) & \mathbf{b} &=& \mathbf{ 1-r_2 } \\ \hline & ar_1 &=& x \quad | \quad r_1 = 1-a \\ & a(1-a) &=& x \\ & a^2-a+x &=& 0 \\ (4) & \mathbf{a} &=& \mathbf{\dfrac{1\pm \sqrt{1-4x}}{2}} \\ (5) & \mathbf{r_1} &=& \mathbf{ 1-a } \\ \hline \end{array}\)

 

\(\begin{array}{|l|r|r|r|c|} \hline & r_2= & b= & a= & r_1= & \text{distinct} \\ \hline \mathbf{x=\dfrac{1}{4}} & \dfrac{1}{2} & \dfrac{1}{2} & \dfrac{1}{2} & \dfrac{1}{2} & \text{no} \\ \hline \mathbf{x=-\dfrac{1}{8}\left( \sqrt{5} + 1 \right)} & \dfrac{1-\sqrt{5}}{4} & \dfrac{3+\sqrt{5}}{4} & b & r_2 & \text{no} \\ & & & r_2 & b & \text{yes} \\ \hline \mathbf{x_3=\dfrac{1}{8}\left( \sqrt{5} - 1 \right)} & \dfrac{1+\sqrt{5}}{4} & \dfrac{3-\sqrt{5}}{4} & b & r_2 & \text{no} \\ & & & r_2 & b & \text{yes} \\ \hline \end{array} \)

 

Solution 1:

\(\begin{array}{|l|} \hline \mathbf{x=-\dfrac{1}{8}\left( \sqrt{5} + 1 \right)} \\ a=r_2 = \dfrac{1-\sqrt{5}}{4} \\ r_1 = b = \dfrac{3+\sqrt{5}}{4} \\ b = \dfrac{3+\sqrt{5}}{4} \\ r_2 = \dfrac{1-\sqrt{5}}{4} \\ \hline a+ar_1+ar_1^2+\ldots = \left( \dfrac{1-\sqrt{5}}{4} \right) +\underbrace{\left(\dfrac{1-\sqrt{5}}{4}\right)\left(\dfrac{3+\sqrt{5}}{4}\right)}_{=x} +\left(\dfrac{1-\sqrt{5}}{4}\right)\left(\dfrac{3+\sqrt{5}}{4}\right)^2 +\ldots \\\\ b+br_2+br_2^2+\ldots = \left( \dfrac{3+\sqrt{5}}{4} \right) +\overbrace{\left(\dfrac{3+\sqrt{5}}{4} \right)\left(\dfrac{1-\sqrt{5}}{4}\right)}^{=x} +\underbrace{\left(\dfrac{3+\sqrt{5}}{4} \right)\left(\dfrac{1-\sqrt{5}}{4}\right)^2}_{=\dfrac{1}{8}} +\ldots \\ \hline \end{array}\)

 

Solution 2:

\(\begin{array}{|l|} \hline x=\mathbf{\dfrac{1}{8}\left( \sqrt{5} - 1 \right)} \\ a=r_2 = \dfrac{1+\sqrt{5}}{4} \\ r_1 = b = \dfrac{3-\sqrt{5}}{4} \\ b = \dfrac{3-\sqrt{5}}{4} \\ r_2 = \dfrac{1+\sqrt{5}}{4} \\ \hline a+ar_1+ar_1^2+\ldots = \left( \dfrac{1+\sqrt{5}}{4} \right) +\underbrace{\left(\dfrac{1+\sqrt{5}}{4}\right)\left(\dfrac{3-\sqrt{5}}{4}\right)}_{=x} +\left(\dfrac{1+\sqrt{5}}{4}\right)\left(\dfrac{3-\sqrt{5}}{4}\right)^2 +\ldots \\\\ b+br_2+br_2^2+\ldots = \left( \dfrac{3-\sqrt{5}}{4} \right) +\overbrace{\left(\dfrac{3-\sqrt{5}}{4} \right)\left(\dfrac{1+\sqrt{5}}{4}\right)}^{=x} +\underbrace{\left(\dfrac{3-\sqrt{5}}{4} \right)\left(\dfrac{1+\sqrt{5}}{4}\right)^2}_{=\dfrac{1}{8}} +\ldots \\ \hline \end{array}\)

 

Find all possible values for the second term of both series:

\(\begin{array}{|rcll|} \hline \text{The second term: } & \left(\dfrac{1-\sqrt{5}}{4}\right)\left(\dfrac{3+\sqrt{5}}{4}\right)&=&-\dfrac{1}{8}\left( \sqrt{5} + 1 \right) \\ \text{The second term: } & \left(\dfrac{1+\sqrt{5}}{4}\right)\left(\dfrac{3-\sqrt{5}}{4}\right)&=&\dfrac{1}{8}\left( \sqrt{5} - 1 \right) \\ \hline \end{array} \)

 

laugh

heureka Sep 12, 2019

5 Online Users