+0  
 
+1
141
2
avatar

Let $\log_{4}3=x$. Then $\log_{2}27=kx$. Find $k$.

Guest Apr 16, 2018
 #1
avatar+89806 
+3

\(\log_{4}3=x$. Then $\log_{2}27=kx\)       find k

 

In exponential form we have.....

 

4^x  = 3           and        2^(kx) = 27

 

Working with the expression on  the left :

 

4^x  = 3      and we can write

 

(2^2)^x  = 3

 

2^(2x)  = 3

 

Cube each side

 

[ 2^(2x)]^3  = 3^3

 

2^(6x)  =  27

 

So  k  = 6

 

 

cool cool cool

CPhill  Apr 16, 2018
 #2
avatar+20024 
+2

Let $\log_{4}3=x$. Then $\log_{2}27=kx$. Find $k$.

 

\(\left. \begin{array}{rcll} \log_{4}3 &=& x \\ \log_{2}27 &=& kx \\ \end{array} \right\} \begin{array}{|rcll|} \hline \dfrac{\log_{2}27}{\log_{4}3} &=& \dfrac{kx}{x} = k \qquad ( x\ne 0) \\ k &=& \dfrac{\log_{2}27}{\log_{4}3} \\\\ &=& \dfrac{ \dfrac{\ln(27)}{\ln(2)} }{ \dfrac{\ln(3)}{\ln(4)} } \\\\ &=& \dfrac{\ln(3^3)\ln(2^2)}{\ln(2)\ln(3)} \\\\ &=& \dfrac{3\ln(3)\cdot 2\ln(2)}{\ln(2)\ln(3)} \\\\ &=& 3\cdot 2 \\\\ \mathbf{k} & \mathbf{=} & \mathbf{6} \\ \hline \end{array}\)

 

laugh

heureka  Apr 16, 2018

27 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.