+0  
 
+1
40
2
avatar

Let $\log_{4}3=x$. Then $\log_{2}27=kx$. Find $k$.

 
Guest Apr 16, 2018
Sort: 

2+0 Answers

 #1
avatar+85735 
+3

\(\log_{4}3=x$. Then $\log_{2}27=kx\)       find k

 

In exponential form we have.....

 

4^x  = 3           and        2^(kx) = 27

 

Working with the expression on  the left :

 

4^x  = 3      and we can write

 

(2^2)^x  = 3

 

2^(2x)  = 3

 

Cube each side

 

[ 2^(2x)]^3  = 3^3

 

2^(6x)  =  27

 

So  k  = 6

 

 

cool cool cool

 
CPhill  Apr 16, 2018
 #2
avatar+19207 
+2

Let $\log_{4}3=x$. Then $\log_{2}27=kx$. Find $k$.

 

\(\left. \begin{array}{rcll} \log_{4}3 &=& x \\ \log_{2}27 &=& kx \\ \end{array} \right\} \begin{array}{|rcll|} \hline \dfrac{\log_{2}27}{\log_{4}3} &=& \dfrac{kx}{x} = k \qquad ( x\ne 0) \\ k &=& \dfrac{\log_{2}27}{\log_{4}3} \\\\ &=& \dfrac{ \dfrac{\ln(27)}{\ln(2)} }{ \dfrac{\ln(3)}{\ln(4)} } \\\\ &=& \dfrac{\ln(3^3)\ln(2^2)}{\ln(2)\ln(3)} \\\\ &=& \dfrac{3\ln(3)\cdot 2\ln(2)}{\ln(2)\ln(3)} \\\\ &=& 3\cdot 2 \\\\ \mathbf{k} & \mathbf{=} & \mathbf{6} \\ \hline \end{array}\)

 

laugh

 
heureka  Apr 16, 2018

29 Online Users

avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details