+0  
 
0
51
1
avatar

The polynomial $f(x)$ has degree 3. If $f(-1) = 15$, $f(0)= 0$, $f(1) = -5$, and $f(2) = 12$, then what are the $x$-intercepts of the graph of $f$?

Guest Apr 4, 2018
edited by Guest  Apr 4, 2018
Sort: 

1+0 Answers

 #1
avatar+19207 
+1

The polynomial $f(x)$ has degree 3. If $f(-1) = 15$, $f(0)= 0$, $f(1) = -5$, and $f(2) = 12$,

then what are the $x$-intercepts of the graph of $f$?

The polynomial of degree 3 is:

\(f(x) = ax^3+bx^2+cx+d\)

 

\(f(0) = 0:\)

\(\begin{array}{|rcll|} \hline f(0) = 0 &=& a\cdot 0^3+b\cdot 0^2+c\cdot 0+d \\ 0 &=& d \\ \mathbf{d} &\mathbf{=}& \mathbf{0} \\ \hline \end{array}\)

 

The polyomial of degree 3 is now:

\(f(x) = ax^3+bx^2+cx\)

 

\(f(-1) = 15:\)

\(\begin{array}{|rcll|} \hline f(-1) = 15 &=& a\cdot (-1)^3+b\cdot (-1)^2+c\cdot (-1) \\ 15 &=& -a +b-c \\ \mathbf{ -a+b-c} &\mathbf{=}& \mathbf{15} \qquad (1) \\ \hline \end{array}\)

 

 

\(f(1) = -5:\)

\(\begin{array}{|rcll|} \hline f(1) = -5 &=& a\cdot 1^3+b\cdot 1^2+c\cdot 1 \\ -5 &=& a +b+c \\ \mathbf{ a +b+c } &\mathbf{=}& \mathbf{-5} \qquad (2) \\ \hline \end{array}\)

 

 

\(f(2) = 12:\)

\(\begin{array}{|rcll|} \hline f(2) = 12 &=& a\cdot 2^3+b\cdot 2^2+c\cdot 2 \\ 12&=& 8a+4b+2c \quad & | \quad : 2 \\ \mathbf{ 4a +2b+c } &\mathbf{=}& \mathbf{6} \qquad (3) \\ \hline \end{array}\)

 

find a,b,c:

\(\begin{array}{|lrcll|} \hline (1) & \mathbf{ -a+b-c} &\mathbf{=}& \mathbf{15} \\ (2) & \mathbf{ a +b+c } &\mathbf{=}& \mathbf{-5} \\ (3) & \mathbf{ 4a +2b+c } &\mathbf{=}& \mathbf{6} \\ \hline (1)+(2): & 2b &=& 10 \\ & \mathbf{b} &\mathbf{=}& \mathbf{5} \\ \hline (3)-(2): & 3a+b &=& 11 \quad & | \quad b=5 \\ & 3a+5 &=& 11 \\ & 3a &=& 6 \\ & \mathbf{a} &\mathbf{=}& \mathbf{2} \\ \hline (2) & a +b+c & = & -5 \quad & | \quad a=2\quad b=5 \\ & 2 +5+c & = & -5 \\ & 7+c & = & -5 \\ & c & = & -5 -7 \\ & \mathbf{c} &\mathbf{=}& \mathbf{-12} \\ \hline \end{array}\)

 

The polyomial of degree 3 is:

\(f(x) = 2x^3+5x^2-12x\)

 

The graph:

 

\(\text{what are the $x$-intercepts of the graph of $f\ $ ?}\)

 

\(\begin{array}{|lrcll|} \hline & 2x^3+5x^2-12x &=& 0 \\ & x(2x^2+5x-12) &=& 0 \\ \hline 1. & \mathbf{x_1} &\mathbf{=}& \mathbf{0} \\ \hline 2. \\ & 2x^2+5x-12 &=& 0 \\ & x &=& \dfrac{-5 \pm \sqrt{25-4\cdot 2 \cdot (-12) } } {2\cdot 2} \\ & &=& \dfrac{-5 \pm \sqrt{121} } {4} \\ & &=& \dfrac{-5 \pm 11 } {4} \\\\ & x_2 &=& \dfrac{-5 + 11 } {4} \\ & \mathbf{x_2} &\mathbf{=}& \mathbf{1.5} \\\\ & x_3 &=& \dfrac{-5 - 11 } {4} \\ & \mathbf{x_3} &\mathbf{=}& \mathbf{-4} \\ \hline \end{array}\)

 

\(\text{ The $x$-intercepts of the graph of $f$ are x=-4, x=0, and x = 1.5 }\)

 

laugh

heureka  Apr 4, 2018

13 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details