+0  
 
0
171
1
avatar

The polynomial $f(x)$ has degree 3. If $f(-1) = 15$, $f(0)= 0$, $f(1) = -5$, and $f(2) = 12$, then what are the $x$-intercepts of the graph of $f$?

Guest Apr 4, 2018
edited by Guest  Apr 4, 2018
 #1
avatar+20144 
+1

The polynomial $f(x)$ has degree 3. If $f(-1) = 15$, $f(0)= 0$, $f(1) = -5$, and $f(2) = 12$,

then what are the $x$-intercepts of the graph of $f$?

The polynomial of degree 3 is:

\(f(x) = ax^3+bx^2+cx+d\)

 

\(f(0) = 0:\)

\(\begin{array}{|rcll|} \hline f(0) = 0 &=& a\cdot 0^3+b\cdot 0^2+c\cdot 0+d \\ 0 &=& d \\ \mathbf{d} &\mathbf{=}& \mathbf{0} \\ \hline \end{array}\)

 

The polyomial of degree 3 is now:

\(f(x) = ax^3+bx^2+cx\)

 

\(f(-1) = 15:\)

\(\begin{array}{|rcll|} \hline f(-1) = 15 &=& a\cdot (-1)^3+b\cdot (-1)^2+c\cdot (-1) \\ 15 &=& -a +b-c \\ \mathbf{ -a+b-c} &\mathbf{=}& \mathbf{15} \qquad (1) \\ \hline \end{array}\)

 

 

\(f(1) = -5:\)

\(\begin{array}{|rcll|} \hline f(1) = -5 &=& a\cdot 1^3+b\cdot 1^2+c\cdot 1 \\ -5 &=& a +b+c \\ \mathbf{ a +b+c } &\mathbf{=}& \mathbf{-5} \qquad (2) \\ \hline \end{array}\)

 

 

\(f(2) = 12:\)

\(\begin{array}{|rcll|} \hline f(2) = 12 &=& a\cdot 2^3+b\cdot 2^2+c\cdot 2 \\ 12&=& 8a+4b+2c \quad & | \quad : 2 \\ \mathbf{ 4a +2b+c } &\mathbf{=}& \mathbf{6} \qquad (3) \\ \hline \end{array}\)

 

find a,b,c:

\(\begin{array}{|lrcll|} \hline (1) & \mathbf{ -a+b-c} &\mathbf{=}& \mathbf{15} \\ (2) & \mathbf{ a +b+c } &\mathbf{=}& \mathbf{-5} \\ (3) & \mathbf{ 4a +2b+c } &\mathbf{=}& \mathbf{6} \\ \hline (1)+(2): & 2b &=& 10 \\ & \mathbf{b} &\mathbf{=}& \mathbf{5} \\ \hline (3)-(2): & 3a+b &=& 11 \quad & | \quad b=5 \\ & 3a+5 &=& 11 \\ & 3a &=& 6 \\ & \mathbf{a} &\mathbf{=}& \mathbf{2} \\ \hline (2) & a +b+c & = & -5 \quad & | \quad a=2\quad b=5 \\ & 2 +5+c & = & -5 \\ & 7+c & = & -5 \\ & c & = & -5 -7 \\ & \mathbf{c} &\mathbf{=}& \mathbf{-12} \\ \hline \end{array}\)

 

The polyomial of degree 3 is:

\(f(x) = 2x^3+5x^2-12x\)

 

The graph:

 

\(\text{what are the $x$-intercepts of the graph of $f\ $ ?}\)

 

\(\begin{array}{|lrcll|} \hline & 2x^3+5x^2-12x &=& 0 \\ & x(2x^2+5x-12) &=& 0 \\ \hline 1. & \mathbf{x_1} &\mathbf{=}& \mathbf{0} \\ \hline 2. \\ & 2x^2+5x-12 &=& 0 \\ & x &=& \dfrac{-5 \pm \sqrt{25-4\cdot 2 \cdot (-12) } } {2\cdot 2} \\ & &=& \dfrac{-5 \pm \sqrt{121} } {4} \\ & &=& \dfrac{-5 \pm 11 } {4} \\\\ & x_2 &=& \dfrac{-5 + 11 } {4} \\ & \mathbf{x_2} &\mathbf{=}& \mathbf{1.5} \\\\ & x_3 &=& \dfrac{-5 - 11 } {4} \\ & \mathbf{x_3} &\mathbf{=}& \mathbf{-4} \\ \hline \end{array}\)

 

\(\text{ The $x$-intercepts of the graph of $f$ are x=-4, x=0, and x = 1.5 }\)

 

laugh

heureka  Apr 4, 2018

10 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.