+0  
 
+1
1083
10
avatar+59 

All help is appreciated. If you only know one question please still submit it. I need all the help I can get. Thanks! smiley

 

1) In the multipication question below, find the product abcd: 

                                        7 a

                                    x  b 6

                                   a  a  a

                              6   6   6      

                              7   d   c  a          

 

2) The function a*b is defined as a*b = a2b-a+b. Find the value of 2*(1*(2*(1*(2*1)))). 

 

3) Find the sum of the proper divisors of the sum of the proper divisors of the number 432. 

 Jan 20, 2019
edited by Dominator416  Jan 20, 2019
 #1
avatar+33661 
+2

1) a = 4, b = 9, You should be able to work out c and d easily from this.

 

3) 722.  I just used WolframAlpha to answer this. (Edited to correct answer - see asdf below).

 Jan 20, 2019
edited by Alan  Jan 20, 2019
edited by Alan  Jan 20, 2019
edited by Alan  Jan 20, 2019
edited by Alan  Jan 20, 2019
 #2
avatar+532 
+1

isnt 808 the sum of the proper divisors of 432?

 

i thought you had to do it twice.

 

so you would have 2^3*101

 

then using formulas, you get 15*102 or 1530

 

then take away 808 to get 722.

 Jan 20, 2019
 #4
avatar+33661 
+3

You are correct. I wrote down the wrong number from WolframAlpha!

Alan  Jan 20, 2019
 #5
avatar+532 
+1

ok thanx

asdf335  Jan 20, 2019
 #3
avatar+532 
+1

and number 2: keep your work organized and solve

 Jan 20, 2019
 #6
avatar+532 
+2

ok so number two.

 

1. calculate the first 2*1

 

2*1 is 4-2+1 or 3.

 

2. now you have 2*(1*(2*(1*3))).

 

calculate 1*3.

 

1*3 is 3-1+3 or 5.

 

3. now you have 2*(1*(2*5)).

 

calculate 2*5.

 

2*5 is 20-2+5 or 23.

 

4. now you have 2*(1*23).

 

calculate 1*23.

 

1*23 is 23-1+23 or 45.

 

5. just calculate 2*45.

 

this is 180-2+45 or 225-2 or 223.

 

HOPE THIS HELPED!

 Jan 20, 2019
 #7
avatar+4622 
+2

asdf is correct! Good job! 722.

 Jan 20, 2019
edited by tertre  Jan 20, 2019
edited by tertre  Jan 20, 2019
 #8
avatar+59 
+2

Thanks You All I really apretiate it!!!!laugh

 Jan 20, 2019
 #9
avatar+4622 
+2

No problem, we are here to help!

tertre  Jan 20, 2019
 #10
avatar+532 
+2

tertre you have to do it again with the same logic and get 722.

 

lol :P

 Jan 20, 2019

0 Online Users