+0  
 
0
1105
1
avatar

Solve

cos^3(2x)=cos(2x) on [0,2pi)

 Apr 25, 2016
 #1
avatar+130561 
0

cos^3 (2x)  = cos(2x)     subtract cos(2x) from each side

 

cos^3 (2x) - cos(2x) = 0      factor out cos(2x)

 

cos(2x)  [ cos^2 (2x) - 1 ] = 0

 

Setting both factors to 0 and solving, we have

 

cos(2x)  = 0

cos(x) = 0 at     x =   pi/2 , 3pi/2, 5pi/2 and at 7pi/2

Then cos(2x)   will = 0 when x =  pi/4 , 3pi/4, 5pi/4, 7pi/4

 

For the second factor, we have

 

cos^(2x) - 1  = 0    factor as a difference of squares

 

[cos (2x)  - 1] [ cos (2x) + 1]  =0

 

Setting the first factor to 0, we have

 

cos(2x) - 1  = 0   add  1 to both sides

cos(2x)  = 1  

cos(x)  = 1     when x = 0  and when x = 2pi

So .... cos(2x) will = 1 when x = 0  and x = pi

 

And for the last factor, we have

 

cos(2x) + 1  = 0       subtract 1 from both sides

cos(2x)  = -1

cos(x)  = -1    when x = pi    and when x = 3pi

So.......cos(2x)   will = 0   when x =  pi/2   and x =  3pi/2

 

So....the solutions are

 

x =0 , x =  pi/4 , x = pi/2 , x = 3pi/4 ,x = pi,  x= 5pi/4, x = 3pi/2, x = 7pi/4

 

Here's a graph :

 

https://www.desmos.com/calculator/5zuwwk5xwb

 

 

cool cool cool

 Apr 25, 2016

0 Online Users