We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
53
3
avatar

1.   Let f(x) = x^3 + 3x ^2 + 4x - 7 and g(x) = -7x^4 + 5x^3 +x^2 - 7. What is the coefficient of x^3 in the sum f(x) + g(x)?

 

2.   Let f(x) = x^4-3x^2 + 2 and g(x) = 2x^4 - 6x^2 + 2x -1. Let a be a constant. What is the largest possible degree of \(f(x) + a\cdot g(x)?\)

 

3.  Let f(x) = x^4-3x^2 + 2 and g(x) = 2x^4 - 6x^2 + 2x -1. Let b be a constant. What is the smallest possible degree of the polynomial \(f(x) + b\cdot g(x)\)?

 

4.  Suppose f is a polynomial such that f(0) = 47, f(1) = 32, f(2) = -13, and f(3)=16. What is the sum of the coefficients of f?

 Nov 18, 2019
 #1
avatar
+1

also

 

Let f(x) = x^4-3x^2 + 2 and g(x) = 2x^4 - 6x^2 + 2x -1 . What is the degree of \(f(x) \cdot g(x)\)?

 Nov 18, 2019
 #2
avatar+19726 
+1

1>  Well, yo would just add the x^3 tems in the two fxns   1 + 5 = 6

2>  If a is a constant, it will only change the coefficients of the functions, not the degree of the terms

          so the greatest degree will still be 4    form   the x^4  and 2x^4 in the two fxns

3>  Similar to 2   except the lowest degree will be  1    from the 2x   term

4>    not sure

            the constant will be 47    

5>   when the two functions are multiplied you will have a x^4 * 2x^4    = 2 x^8 term in the final answer....    dgree 8

 Nov 18, 2019
 #3
avatar+105370 
+1

1.   Let f(x) = x^3 + 3x ^2 + 4x - 7 and g(x) = -7x^4 + 5x^3 +x^2 - 7. What is the coefficient of x^3 in the sum f(x) + g(x)?

 

The coefficient  is  just   the  sum of 1x^3 + 5x^3  = 6x^3  =  6

 

 

2.   Let f(x) = x^4-3x^2 + 2 and g(x) = 2x^4 - 6x^2 + 2x -1. Let a be a constant. What is the largest possible degree of 

f(x) + a* g(x)

 

As long as  "a"  is not  -1/2 , the  sum will result in a polynomial of degree 4

 

 

 

3.  Let f(x) = x^4-3x^2 + 2 and g(x) = 2x^4 - 6x^2 + 2x -1. Let b be a constant. What is the smallest possible degree of the polynomial f(x) + b * g(x) ?

 

If "b"  is  -1/2     the resulting sum will be a first power  polynomial....this is the smallest possible degree

 

 

4.  Suppose f is a polynomial such that f(0) = 47, f(1) = 32, f(2) = -13, and f(3)=16. What is the sum of the coefficients of f?

 

If   f(0) = 47.....then the constant term of the polynomial must just be  47

 

If  f(1)  =  32

Then the sum of the coefficients  is just   32 - 47  =   - 15

 

 

cool cool cool

 Nov 18, 2019
edited by CPhill  Nov 18, 2019
edited by CPhill  Nov 18, 2019

27 Online Users

avatar
avatar
avatar
avatar