We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
896
2
avatar

The exponential function 

N = 3.93 × 1.34 ^d gives the approximate U.S. population, in millions, d decades after 1790. (The formula is valid only up to 1860.)

 

 

Find a formula that gives the U.S. population c centuries after 1790. (Assume that the original formula is valid over several centuries.)

 Nov 7, 2015

Best Answer 

 #2
avatar+105606 
+5

The exponential function 

N = 3.93 × 1.34 ^d gives the approximate U.S. population, in millions, d decades after 1790. (The formula is valid only up to 1860.)

 

 

Find a formula that gives the U.S. population c centuries after 1790. (Assume that the original formula is valid over several centuries.)

 

\(3.93 × 1.34 ^d=3.93\times a^{0.1d}\\ 1.34 ^d=a^{0.1d}\\ log(1.34 ^d)=log(a^{0.1d})\\ d*log(1.34)=0.1d*log(a)\\ log(1.34)=0.1*log(a)\\ 10log(1.34)=log(a)\\ log(a)=10log(1.34)\\ 10^{log(a)}=10^{10*log(1.34)}\\ a=10^{10*log(1.34)}\\ a\approx 18.6659\qquad (4dp)\)

 

N = 3.93 × 1.34 ^d

N = 3.93 × 18.6659 ^C                         C for century

 

check after 1/2 cnetury

N = 3.93 × 1.34 ^5                 =16.979

N = 3.93 × 18.6659 ^0.5       = 16.979

after 5 centuries

N = 3.93 × 1.34 ^50              = 8 904 970

N = 3.93 × 18.6659 ^5          = 8 905 067         difference due to rounding

 Nov 8, 2015
 #1
avatar+104 
+5

n=(((393*50^(-d-1))*67^d)/2).

 Nov 7, 2015
 #2
avatar+105606 
+5
Best Answer

The exponential function 

N = 3.93 × 1.34 ^d gives the approximate U.S. population, in millions, d decades after 1790. (The formula is valid only up to 1860.)

 

 

Find a formula that gives the U.S. population c centuries after 1790. (Assume that the original formula is valid over several centuries.)

 

\(3.93 × 1.34 ^d=3.93\times a^{0.1d}\\ 1.34 ^d=a^{0.1d}\\ log(1.34 ^d)=log(a^{0.1d})\\ d*log(1.34)=0.1d*log(a)\\ log(1.34)=0.1*log(a)\\ 10log(1.34)=log(a)\\ log(a)=10log(1.34)\\ 10^{log(a)}=10^{10*log(1.34)}\\ a=10^{10*log(1.34)}\\ a\approx 18.6659\qquad (4dp)\)

 

N = 3.93 × 1.34 ^d

N = 3.93 × 18.6659 ^C                         C for century

 

check after 1/2 cnetury

N = 3.93 × 1.34 ^5                 =16.979

N = 3.93 × 18.6659 ^0.5       = 16.979

after 5 centuries

N = 3.93 × 1.34 ^50              = 8 904 970

N = 3.93 × 18.6659 ^5          = 8 905 067         difference due to rounding

Melody Nov 8, 2015

11 Online Users