+0  
 
+5
563
3
avatar+739 

The three points (3,-5), (-a + 2, 3), and (2a+3,2) lie on the same line. What is a?

MIRB16  Jul 27, 2017
 #1
avatar
0

Don't be a fat fu*k

Guest Jul 27, 2017
 #2
avatar+7266 
+1

Since all the points are on the same line, the slope between each point will be the same.

 

slope  =  \(\frac{\text{change in y}}{\text{change in x}}\)

 

 slope between first and second points  =  \(\frac{(-5)-(3)}{(3)-(-a+2)}=\frac{-8}{1+a} \)

 

slope between second and third points  =  \(\frac{(3)-(2)}{(-a+2)-(2a+3)}=\frac{1}{-3a-1} \)

 

      slope between third and first points  =  \(\frac{(2)-(-5)}{(2a+3)-(3)}=\frac{7}{2a}\)

 

Let's pick any two and equate them.

 

\(\frac{7}{2a}=\frac{-8}{1+a} \)         Cross - multiply...

 

(7)(1+a) = (-8)(2a)

 

7 + 7a  =  -16a

 

7  =  -23a

 

-7/23  =  a               And here is a graph: https://www.desmos.com/calculator/2pdpfrqz05

hectictar  Jul 27, 2017
 #3
avatar+20001 
0

The three points (3,-5), (-a + 2, 3), and (2a+3,2) lie on the same line.

What is a?

 

Intercept theorem:

\(\begin{array}{|rcll|} \hline \dfrac{(2a-3)-(3)}{ 2-(-5) } &=& \dfrac{ (-a+2) - 3 } { 3-(-5) } \\\\ \dfrac{2a}{ 7 } &=& \dfrac{ -a -1 } { 8 } \\\\ 16a &=& -7a-7 \\ 23a &=& -7 \\ \mathbf{a} &\mathbf{=}& \mathbf{ -\frac{7}{23} } \\ \hline \end{array} \)

 

laugh

heureka  Jul 28, 2017

24 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.