We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# Help please

0
345
1

Find all solutions to the equation $\sqrt{3x+6}=x+2$. If there are multiple solutions, order them from least to greatest, separated by comma(s).

Aug 17, 2017

### Best Answer

#1
+1

Find all solutions to the equation \sqrt{3x+6}=x+2 ($$\sqrt{3x+6}=x+2$$).
If there are multiple solutions,
order them from least to greatest, separated by comma(s).

$$\begin{array}{|rcll|} \hline \sqrt{3x+6} &=& x+2 \quad & | \quad \text{square both sides} \\ 3x+6 &=& (x+2)^2 \\ 3x+6 &=& x^2+4x+4 \\ x^2 +x -2 &=& 0 \\ (x+2)(x-1) &=& 0 \\\\ x_1 &=& -2 \\ x_2 &=& 1 \\ \hline \end{array}$$

Solution Set: {-2,1}

Proof:
$$x=-2:\qquad \sqrt{3\cdot(-2)+6} = -2+2\quad \checkmark \\ x=1: \qquad \sqrt{3\cdot(1)+6} = 1+2 \quad \checkmark$$ Aug 17, 2017

### 1+0 Answers

#1
+1
Best Answer

Find all solutions to the equation \sqrt{3x+6}=x+2 ($$\sqrt{3x+6}=x+2$$).
If there are multiple solutions,
order them from least to greatest, separated by comma(s).

$$\begin{array}{|rcll|} \hline \sqrt{3x+6} &=& x+2 \quad & | \quad \text{square both sides} \\ 3x+6 &=& (x+2)^2 \\ 3x+6 &=& x^2+4x+4 \\ x^2 +x -2 &=& 0 \\ (x+2)(x-1) &=& 0 \\\\ x_1 &=& -2 \\ x_2 &=& 1 \\ \hline \end{array}$$

Solution Set: {-2,1}

Proof:
$$x=-2:\qquad \sqrt{3\cdot(-2)+6} = -2+2\quad \checkmark \\ x=1: \qquad \sqrt{3\cdot(1)+6} = 1+2 \quad \checkmark$$ heureka Aug 17, 2017