+0  
 
0
299
1
avatar

Find all solutions to the equation $\sqrt{3x+6}=x+2$. If there are multiple solutions, order them from least to greatest, separated by comma(s).

 Aug 17, 2017

Best Answer 

 #1
avatar+20805 
+1

Find all solutions to the equation \sqrt{3x+6}=x+2 (\(\sqrt{3x+6}=x+2\)).
If there are multiple solutions,
order them from least to greatest, separated by comma(s).

 

\(\begin{array}{|rcll|} \hline \sqrt{3x+6} &=& x+2 \quad & | \quad \text{square both sides} \\ 3x+6 &=& (x+2)^2 \\ 3x+6 &=& x^2+4x+4 \\ x^2 +x -2 &=& 0 \\ (x+2)(x-1) &=& 0 \\\\ x_1 &=& -2 \\ x_2 &=& 1 \\ \hline \end{array}\)

 

Solution Set: {-2,1}

 

Proof:
\(x=-2:\qquad \sqrt{3\cdot(-2)+6} = -2+2\quad \checkmark \\ x=1: \qquad \sqrt{3\cdot(1)+6} = 1+2 \quad \checkmark \)

 

laugh

 Aug 17, 2017
 #1
avatar+20805 
+1
Best Answer

Find all solutions to the equation \sqrt{3x+6}=x+2 (\(\sqrt{3x+6}=x+2\)).
If there are multiple solutions,
order them from least to greatest, separated by comma(s).

 

\(\begin{array}{|rcll|} \hline \sqrt{3x+6} &=& x+2 \quad & | \quad \text{square both sides} \\ 3x+6 &=& (x+2)^2 \\ 3x+6 &=& x^2+4x+4 \\ x^2 +x -2 &=& 0 \\ (x+2)(x-1) &=& 0 \\\\ x_1 &=& -2 \\ x_2 &=& 1 \\ \hline \end{array}\)

 

Solution Set: {-2,1}

 

Proof:
\(x=-2:\qquad \sqrt{3\cdot(-2)+6} = -2+2\quad \checkmark \\ x=1: \qquad \sqrt{3\cdot(1)+6} = 1+2 \quad \checkmark \)

 

laugh

heureka Aug 17, 2017

26 Online Users

avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.