+0  
 
0
76
1
avatar

Please help. Sorry, I'm not very good with these.

Guest Aug 24, 2018

Best Answer 

 #1
avatar+348 
+4

Problem \(1\):

 

The formula for the surface area of a cone is \(πrl+π{r}^{2}\), where \(r\) is the radius and \(l\) is the slant height. For problem one, \(r = 6\) and \(l = 14\). By plugging in the variable values, we can get \(π(6)(14)+π{6}^{2} = 84π + 36π = 120π\)

 

Problem 2:

 

The formula for the surface area of a cylinder is \(2πrh+2π{r}^{2}\), where \(r\) is the radius and \(h\) is the height. \(r = 13\) and \(h = 17\). When you plug in the variable values, you can get \(2π(13)(17)+2π{13}^{2} = 442π + 338π = 780π\), and it is asking for the nearest whole number, so multiply \(3.14\) by \(780\). The product is \(2449.2\), which rounds down to \(2449\).

 

Problem 3:

 

The formula for the surface area of a cone is \(πrl+π{r}^{2}\), where \(r\) is the radius and \(l\) is the slant height. \(r = 7\) and \(l = 24\). By plugging in the variable values, we can get \(π(7)(24)+π{7}^{2} = 168π + 49π = 217π\). Since they are asking for a decimal to the nearest tenth, we can get \(681.4\).

 

Problem 4:

 

The formula for the surface area of a cylinder is \(2πrh+2π{r}^{2}\), where \(r\) is the radius and \(h\) is the height.  \(r = 25\) and \(h = 36\). When you plug in the variable values, you can get \(2π(25)(36)+2π{25}^{2} = 1800π + 1250π = 3050π\).

 

- Daisy

dierdurst  Aug 24, 2018
 #1
avatar+348 
+4
Best Answer

Problem \(1\):

 

The formula for the surface area of a cone is \(πrl+π{r}^{2}\), where \(r\) is the radius and \(l\) is the slant height. For problem one, \(r = 6\) and \(l = 14\). By plugging in the variable values, we can get \(π(6)(14)+π{6}^{2} = 84π + 36π = 120π\)

 

Problem 2:

 

The formula for the surface area of a cylinder is \(2πrh+2π{r}^{2}\), where \(r\) is the radius and \(h\) is the height. \(r = 13\) and \(h = 17\). When you plug in the variable values, you can get \(2π(13)(17)+2π{13}^{2} = 442π + 338π = 780π\), and it is asking for the nearest whole number, so multiply \(3.14\) by \(780\). The product is \(2449.2\), which rounds down to \(2449\).

 

Problem 3:

 

The formula for the surface area of a cone is \(πrl+π{r}^{2}\), where \(r\) is the radius and \(l\) is the slant height. \(r = 7\) and \(l = 24\). By plugging in the variable values, we can get \(π(7)(24)+π{7}^{2} = 168π + 49π = 217π\). Since they are asking for a decimal to the nearest tenth, we can get \(681.4\).

 

Problem 4:

 

The formula for the surface area of a cylinder is \(2πrh+2π{r}^{2}\), where \(r\) is the radius and \(h\) is the height.  \(r = 25\) and \(h = 36\). When you plug in the variable values, you can get \(2π(25)(36)+2π{25}^{2} = 1800π + 1250π = 3050π\).

 

- Daisy

dierdurst  Aug 24, 2018

16 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.