+0  
 
0
57
1
avatar

The polynomial f(x) has degree 3. If f(-1) = 15, f(0)= 0, f(1) = -5, and f(2) = 12, then what are the x-intercepts of the graph of f?

Guest Apr 21, 2018
 #1
avatar+92775 
+2

The polynomial f(x) has degree 3. If f(-1) = 15, f(0)= 0, f(1) = -5, and f(2) = 12, then what are the x-intercepts of the graph of f?

 

 

\(f(x)=ax^3\;\;so\;\; d=0\\ f(x)=ax^3+bx^2+cx\\~\\ f(-1)= -a+b-c=15\\ f((1)=a+b+c=-5\\ f(2)=8a+4b+2c=12 \)

 

\(\begin{bmatrix} 1 && 1 && 1&&|&&-5\\ -1 && 1 && -1&&|&&15\\ 8 && 4 && 2 && | && 12 \end{bmatrix}\\~\\ *\text{row 2 replaced with row 2 + row 1}\\~\\ \begin{bmatrix} 1 && 1 && 1&&|&&-5\\ 0 && 2 && 0&&|&&10\\ 8 && 4 && 2 && | && 12\\ \end{bmatrix}\\~\\ *\text{row 3 replaced with row Row 3 - 8* row 1 }\\~\\ \begin{bmatrix} 1 && 1 && 1&&|&&-5\\ 0 && 2 && 0&&|&&10\\ 0 && -4 && -6 && | && 52\\ \end{bmatrix}\\~\\ \)

 

 

 

2b=10

b=5

 

-4b-6c=52 becomes

 -20-6c=52

-6c=72

c=-12

 

a+b+c=-5   becomes

a+5-12=-5

a=2

 

\(f(x)=2x^3+5x^2-12x\\ f(x)=x(2x^2+5x-12)\\ \)

roots are  x=0 and 

\(x = {-5 \pm \sqrt{25+96} \over 4}\\ x = {-5 \pm 11 \over 4}\\ x=0\qquad x=1.5\qquad x=-4\)

 

They are the x intercepts.

Melody  Apr 22, 2018
edited by Melody  Apr 22, 2018

11 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.