+0  
 
0
35
1
avatar

The polynomial f(x) has degree 3. If f(-1) = 15, f(0)= 0, f(1) = -5, and f(2) = 12, then what are the x-intercepts of the graph of f?

Guest Apr 21, 2018
Sort: 

1+0 Answers

 #1
avatar+92458 
+2

The polynomial f(x) has degree 3. If f(-1) = 15, f(0)= 0, f(1) = -5, and f(2) = 12, then what are the x-intercepts of the graph of f?

 

 

\(f(x)=ax^3\;\;so\;\; d=0\\ f(x)=ax^3+bx^2+cx\\~\\ f(-1)= -a+b-c=15\\ f((1)=a+b+c=-5\\ f(2)=8a+4b+2c=12 \)

 

\(\begin{bmatrix} 1 && 1 && 1&&|&&-5\\ -1 && 1 && -1&&|&&15\\ 8 && 4 && 2 && | && 12 \end{bmatrix}\\~\\ *\text{row 2 replaced with row 2 + row 1}\\~\\ \begin{bmatrix} 1 && 1 && 1&&|&&-5\\ 0 && 2 && 0&&|&&10\\ 8 && 4 && 2 && | && 12\\ \end{bmatrix}\\~\\ *\text{row 3 replaced with row Row 3 - 8* row 1 }\\~\\ \begin{bmatrix} 1 && 1 && 1&&|&&-5\\ 0 && 2 && 0&&|&&10\\ 0 && -4 && -6 && | && 52\\ \end{bmatrix}\\~\\ \)

 

 

 

2b=10

b=5

 

-4b-6c=52 becomes

 -20-6c=52

-6c=72

c=-12

 

a+b+c=-5   becomes

a+5-12=-5

a=2

 

\(f(x)=2x^3+5x^2-12x\\ f(x)=x(2x^2+5x-12)\\ \)

roots are  x=0 and 

\(x = {-5 \pm \sqrt{25+96} \over 4}\\ x = {-5 \pm 11 \over 4}\\ x=0\qquad x=1.5\qquad x=-4\)

 

They are the x intercepts.

Melody  Apr 22, 2018
edited by Melody  Apr 22, 2018

28 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy