+0  
 
0
84
1
avatar

Let P(x) be a nonconstant polynomial, where all the coefficients are nonnegative integers. Prove that there exist infinitely many positive integers n such that P(n) is composite. 

Hint: Remember that if a and b are distinct integers, then P(a)-P(b) is divisible by a-b 

 Jun 4, 2020
 #1
avatar
0

Here's a hint: let r be an integer root of p(x).

 Jun 14, 2020

60 Online Users

avatar
avatar
avatar
avatar