Prove that sinθ=eiθ−e−iθ2i
like this
sinθ=eiθ−e−iθ2i RHS=[cosθ+isinθ]−[cos(−θ)+isin(−θ)]2iRHS=[cosθ+isinθ]−[cos(θ)−isin(θ)]2iRHS=2isinθ2iRHS=sinθ RHS=LHSQ.E.D.